filter Select stock returns of January 31, 2020.filter Create the same line plot as in Q7, but without Amazon.# Load packages
library(tidyquant)
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## ══ Need to Learn tidyquant? ══════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
library(tidyverse)
## ── Attaching packages ───────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.4
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ──────────────── tidyverse_conflicts() ──
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date() masks base::date()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks xts::first()
## x lubridate::intersect() masks base::intersect()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks xts::last()
## x lubridate::setdiff() masks base::setdiff()
## x lubridate::union() masks base::union()
# Import stock prices
stock_prices <- tq_get(c("WMT", "TGT", "AMZN"), get = "stock.prices", from = "2020-01-01")
# Calculate daily returns
stock_returns <-
stock_prices %>%
group_by(symbol) %>%
tq_mutate(select = adjusted, mutate_fun = periodReturn, period = "daily")
stock_returns
## # A tibble: 195 x 9
## # Groups: symbol [3]
## symbol date open high low close volume adjusted daily.returns
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 WMT 2020-01-02 119. 120. 119. 119. 6764900 118. 0
## 2 WMT 2020-01-03 118. 119. 118. 118. 5399200 117. -0.00883
## 3 WMT 2020-01-06 117. 118. 117. 118. 6445500 117. -0.00204
## 4 WMT 2020-01-07 117. 118. 116. 117. 6846900 116. -0.00926
## 5 WMT 2020-01-08 116. 117. 116. 116. 5875800 116. -0.00343
## 6 WMT 2020-01-09 116. 117. 116. 117. 5563700 117. 0.0103
## 7 WMT 2020-01-10 117. 117. 116. 116. 6054800 116. -0.00835
## 8 WMT 2020-01-13 116. 117. 115. 116. 6112600 115. -0.00430
## 9 WMT 2020-01-14 115. 116. 115. 116. 6585800 116. 0.00259
## 10 WMT 2020-01-15 115. 116. 115. 115. 7454200 115. -0.00775
## # … with 185 more rows
filter Select stock returns of January 31, 2020.Hint: See the code in 1.2.2 Selecting observations.
filter(stock_returns,
date == "2020-01-31")
## # A tibble: 3 x 9
## # Groups: symbol [3]
## symbol date open high low close volume adjusted daily.returns
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 WMT 2020-01-31 116. 116. 114. 114. 7775800 114. -0.0179
## 2 TGT 2020-01-31 113. 114. 110. 111. 6961900 110. -0.0343
## 3 AMZN 2020-01-31 2051. 2056. 2002. 2009. 15567300 2009. 0.0738
Hint: Answer the question by comparing daily returns of each stock on January 31, 2020. Based on just the daily returns, Amazon performed the best. They were the only stock that didn’t lose money.
Hint: See the code in 4.3.3 Box plots. Add an appropriate title and labels for both axes.
ggplot(stock_returns,
aes(x = symbol,
y = daily.returns)) +
geom_boxplot() +
labs(title = "Daily Return Distribution by Stock")
Hint: Answer the question by comparing median and outliers of each stock. Based on the boxplot above, I would say that Amazon did the best. They have less outliers than Target, but more outliers than Walmart. Even though they have more outliers than Walmrt, they have a higher median and two of their outliers are really high. Overall, they also have the highest median.
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
plotdata <- stock_returns %>%
group_by(symbol) %>%
summarize(mean_daily.returns = mean(daily.returns))
plotdata
## # A tibble: 3 x 2
## symbol mean_daily.returns
## <chr> <dbl>
## 1 AMZN 0.000456
## 2 TGT -0.00406
## 3 WMT 0.000596
Hint: See the code in 4.3.1 Bar chart (on summary statistics). Add an appropriate title and labels for both axes.
ggplot(plotdata,
aes(x = symbol,
y = mean_daily.returns)) +
geom_bar(stat = "identity")
Hint: Google search something like “ggplot2 multiple lines”.
ggplot(stock_prices,
aes(x=date,
y= close,
color = symbol))+
geom_line()
filter Create the same line plot as in Q7, but without Amazon.Note: Insert a new code chunk below, copy and paste the code in Q7, and revise it using the dplyr::filter function. This is an extra credit question worth 10 points. However, the total number of points you could earn for this quiz is capped at 100 points. In other words, the extra credit can only offset any one question you missed in the first seven questions.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.