R Markdown

** pvalue Chi2 < 0.05, CFI & TLI > 0.9, RMSEA < 0.08 RMSA < 0.08**

1. CFA

1.1 Ước lượng nhận tố khẳng định CFA

setwd("/vidu")
library(foreign)
dulieu <- read.dta("EFA.dta")
library(lavaan)
## This is lavaan 0.6-5
## lavaan is BETA software! Please report any bugs.
mohinh <-"SAT =~ SAT1 + SAT2 + SAT3 + SAT4 \n RAS=~RAS1 + RAS2 + RAS3 + RAS4 \n COM =~COM1 +COM2 +COM3 +COM4 \n PAM=~PAM1 + PAM2 +PAM3 +PAM4 \n TAD=~TAD1 + TAD2 + TAD3 + TAD4"
chayCFA <- cfa(mohinh, data=dulieu)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
summary(chayCFA,fit.measures=TRUE)
## lavaan 0.6-5 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         50
##                                                       
##   Number of observations                           150
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               231.679
##   Degrees of freedom                               160
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1944.892
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.959
##   Tucker-Lewis Index (TLI)                       0.951
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3783.457
##   Loglikelihood unrestricted model (H1)      -3667.618
##                                                       
##   Akaike (AIC)                                7666.915
##   Bayesian (BIC)                              7817.447
##   Sample-size adjusted Bayesian (BIC)         7659.206
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.055
##   90 Percent confidence interval - lower         0.038
##   90 Percent confidence interval - upper         0.070
##   P-value RMSEA <= 0.05                          0.302
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   SAT =~                                              
##     SAT1              1.000                           
##     SAT2              0.718    0.075    9.625    0.000
##     SAT3              0.960    0.057   16.939    0.000
##     SAT4              0.666    0.077    8.612    0.000
##   RAS =~                                              
##     RAS1              1.000                           
##     RAS2              0.636    0.071    9.008    0.000
##     RAS3              0.683    0.066   10.276    0.000
##     RAS4              0.543    0.066    8.200    0.000
##   COM =~                                              
##     COM1              1.000                           
##     COM2              0.768    0.067   11.500    0.000
##     COM3              0.976    0.051   19.032    0.000
##     COM4              0.775    0.065   11.857    0.000
##   PAM =~                                              
##     PAM1              1.000                           
##     PAM2              0.770    0.075   10.340    0.000
##     PAM3              0.865    0.076   11.422    0.000
##     PAM4              0.737    0.074    9.956    0.000
##   TAD =~                                              
##     TAD1              1.000                           
##     TAD2              0.643    0.066    9.683    0.000
##     TAD3              0.870    0.061   14.325    0.000
##     TAD4              0.612    0.065    9.405    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   SAT ~~                                              
##     RAS              -0.153    0.111   -1.385    0.166
##     COM               0.003    0.095    0.027    0.978
##     PAM               0.138    0.094    1.465    0.143
##     TAD              -0.029    0.096   -0.296    0.767
##   RAS ~~                                              
##     COM               0.018    0.106    0.165    0.869
##     PAM               0.028    0.105    0.262    0.793
##     TAD              -0.027    0.108   -0.245    0.806
##   COM ~~                                              
##     PAM              -0.121    0.091   -1.324    0.186
##     TAD              -0.063    0.094   -0.671    0.502
##   PAM ~~                                              
##     TAD               0.041    0.092    0.441    0.659
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .SAT1              0.016    0.045    0.347    0.728
##    .SAT2              0.849    0.101    8.395    0.000
##    .SAT3              0.321    0.056    5.734    0.000
##    .SAT4              0.940    0.111    8.485    0.000
##    .RAS1             -0.088    0.092   -0.960    0.337
##    .RAS2              0.914    0.110    8.285    0.000
##    .RAS3              0.729    0.093    7.823    0.000
##    .RAS4              0.852    0.101    8.471    0.000
##    .COM1              0.053    0.033    1.610    0.107
##    .COM2              0.613    0.075    8.217    0.000
##    .COM3              0.248    0.043    5.837    0.000
##    .COM4              0.581    0.071    8.176    0.000
##    .PAM1              0.085    0.052    1.641    0.101
##    .PAM2              0.597    0.077    7.767    0.000
##    .PAM3              0.560    0.076    7.324    0.000
##    .PAM4              0.607    0.077    7.882    0.000
##    .TAD1             -0.037    0.050   -0.743    0.458
##    .TAD2              0.680    0.080    8.458    0.000
##    .TAD3              0.451    0.064    7.061    0.000
##    .TAD4              0.661    0.078    8.494    0.000
##     SAT               1.185    0.146    8.125    0.000
##     RAS               1.610    0.198    8.146    0.000
##     COM               1.085    0.135    8.023    0.000
##     PAM               1.028    0.138    7.452    0.000
##     TAD               1.204    0.144    8.385    0.000

1.2. Vẽ đồ thị

library(lavaanPlot)
lavaanPlot(model = chayCFA, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "blue"), coefs = TRUE)
library(semPlot)
## Registered S3 methods overwritten by 'huge':
##   method    from   
##   plot.sim  BDgraph
##   print.sim BDgraph
semPaths(chayCFA,"est", title = FALSE, curvePivot = TRUE)

2 Mô hình SEM

2.1 Ước lượng Cov-sEm

mohinhSEM <-"
SAT =~ SAT1 + SAT2 + SAT3 + SAT4 
RAS=~RAS1 + RAS2 + RAS3 + RAS4 
COM =~COM1 +COM2 +COM3 +COM4
PAM=~PAM1 + PAM2 +PAM3 +PAM4 
TAD=~TAD1 + TAD2 + TAD3 + TAD4
SAT ~ RAS
SAT ~ COM
SAT ~ PAM
SAT ~ TAD
RAS ~ COM + PAM + TAD
"     
chaySEM <-sem(mohinhSEM, data=dulieu)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
summary(chaySEM,standardized=TRUE)
## lavaan 0.6-5 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         50
##                                                       
##   Number of observations                           150
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               231.679
##   Degrees of freedom                               160
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SAT =~                                                                
##     SAT1              1.000                               1.088    0.993
##     SAT2              0.718    0.075    9.625    0.000    0.782    0.647
##     SAT3              0.960    0.057   16.940    0.000    1.045    0.879
##     SAT4              0.666    0.077    8.612    0.000    0.725    0.599
##   RAS =~                                                                
##     RAS1              1.000                               1.269    1.028
##     RAS2              0.636    0.071    9.008    0.000    0.807    0.645
##     RAS3              0.683    0.066   10.276    0.000    0.867    0.713
##     RAS4              0.543    0.066    8.200    0.000    0.689    0.598
##   COM =~                                                                
##     COM1              1.000                               1.041    0.976
##     COM2              0.768    0.067   11.500    0.000    0.800    0.715
##     COM3              0.976    0.051   19.032    0.000    1.017    0.898
##     COM4              0.775    0.065   11.857    0.000    0.807    0.727
##   PAM =~                                                                
##     PAM1              1.000                               1.014    0.961
##     PAM2              0.770    0.075   10.340    0.000    0.781    0.711
##     PAM3              0.865    0.076   11.422    0.000    0.877    0.761
##     PAM4              0.737    0.074    9.956    0.000    0.748    0.693
##   TAD =~                                                                
##     TAD1              1.000                               1.097    1.016
##     TAD2              0.643    0.066    9.683    0.000    0.705    0.650
##     TAD3              0.870    0.061   14.325    0.000    0.955    0.818
##     TAD4              0.612    0.065    9.405    0.000    0.671    0.637
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SAT ~                                                                 
##     RAS              -0.098    0.068   -1.454    0.146   -0.115   -0.115
##     COM               0.018    0.087    0.205    0.837    0.017    0.017
##     PAM               0.140    0.091    1.548    0.122    0.131    0.131
##     TAD              -0.030    0.079   -0.375    0.708   -0.030   -0.030
##   RAS ~                                                                 
##     COM               0.018    0.099    0.185    0.854    0.015    0.015
##     PAM               0.030    0.103    0.290    0.772    0.024    0.024
##     TAD              -0.022    0.090   -0.246    0.806   -0.019   -0.019
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   COM ~~                                                                
##     PAM              -0.121    0.091   -1.324    0.186   -0.114   -0.114
##     TAD              -0.063    0.094   -0.671    0.502   -0.055   -0.055
##   PAM ~~                                                                
##     TAD               0.041    0.092    0.441    0.659    0.037    0.037
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SAT1              0.016    0.045    0.347    0.728    0.016    0.013
##    .SAT2              0.849    0.101    8.395    0.000    0.849    0.582
##    .SAT3              0.321    0.056    5.734    0.000    0.321    0.227
##    .SAT4              0.940    0.111    8.485    0.000    0.940    0.641
##    .RAS1             -0.088    0.092   -0.960    0.337   -0.088   -0.058
##    .RAS2              0.914    0.110    8.285    0.000    0.914    0.584
##    .RAS3              0.729    0.093    7.823    0.000    0.729    0.492
##    .RAS4              0.852    0.101    8.471    0.000    0.852    0.643
##    .COM1              0.053    0.033    1.610    0.107    0.053    0.047
##    .COM2              0.613    0.075    8.217    0.000    0.613    0.489
##    .COM3              0.248    0.043    5.837    0.000    0.248    0.194
##    .COM4              0.581    0.071    8.176    0.000    0.581    0.472
##    .PAM1              0.085    0.052    1.641    0.101    0.085    0.077
##    .PAM2              0.597    0.077    7.767    0.000    0.597    0.495
##    .PAM3              0.560    0.076    7.324    0.000    0.560    0.422
##    .PAM4              0.607    0.077    7.882    0.000    0.607    0.520
##    .TAD1             -0.037    0.050   -0.743    0.458   -0.037   -0.032
##    .TAD2              0.680    0.080    8.458    0.000    0.680    0.578
##    .TAD3              0.451    0.064    7.061    0.000    0.451    0.331
##    .TAD4              0.661    0.078    8.494    0.000    0.661    0.595
##    .SAT               1.149    0.142    8.098    0.000    0.970    0.970
##    .RAS               1.609    0.198    8.143    0.000    0.999    0.999
##     COM               1.085    0.135    8.023    0.000    1.000    1.000
##     PAM               1.028    0.138    7.452    0.000    1.000    1.000
##     TAD               1.204    0.144    8.385    0.000    1.000    1.000

2.2 Vẽ đồ thị

lavaanPlot(model = chaySEM, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "blue"), coefs = TRUE)
semPaths(chaySEM,"std", title = FALSE, curvePivot = TRUE)