Análise Bibliométrica

Esse é um R Markdown documento sobre análise bibliométrica da Psicomotricidade, retirada da base de dados Scopus.

Install and load package if require:

if(!require("install.load")) {
  install.packages("install.load")
  library(install.load)
}
## Loading required package: install.load
install_load("dplyr","factoextra", "FactoMineR", "ggplot2", "igraph", "Matrix", "rscopus",
             "SnowballC", "stringr", "bibliometrix")
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
## 
##     as_data_frame, groups, union
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
## To cite bibliometrix in publications, please use:
## 
## Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), pp 959-975, Elsevier.
##                         
## 
## http:\\www.bibliometrix.org
## 
##                         
## To start with the shiny web-interface, please digit:
## biblioshiny()
# Base de dados
D <- readFiles("C:/Users/andre/Downloads/psychomotricity.bib") # carregar base
M <- convert2df(D, dbsource = "scopus", format = "bibtex")     # converter base
## 
## Converting your scopus collection into a bibliographic dataframe
## 
## Articles extracted   100 
## Articles extracted   200 
## Articles extracted   300 
## Articles extracted   348 
## Done!
## 
## 
## Generating affiliation field tag AU_UN from C1:  Done!

Análise bibliométrica

## 
## 
## Main Information about data
## 
##  Documents                             348 
##  Sources (Journals, Books, etc.)       220 
##  Keywords Plus (ID)                    1383 
##  Author's Keywords (DE)                891 
##  Period                                1950 - 2020 
##  Average citations per documents       4.296 
## 
##  Authors                               993 
##  Author Appearances                    1121 
##  Authors of single-authored documents  69 
##  Authors of multi-authored documents   924 
##  Single-authored documents             77 
## 
##  Documents per Author                  0.35 
##  Authors per Document                  2.85 
##  Co-Authors per Documents              3.22 
##  Collaboration Index                   3.41 
##  
##  Document types                     
##  ARTICLE                271 
##  BOOK                   4 
##  BOOK CHAPTER           12 
##  CONFERENCE PAPER       16 
##  CONFERENCE REVIEW      1 
##  EDITORIAL              6 
##  NOTE                   1 
##  REVIEW                 29 
##  SHORT SURVEY           8 
##  
## 
## Annual Scientific Production
## 
##  Year    Articles
##     1950        1
##     1952        1
##     1959        2
##     1968        1
##     1972        1
##     1973        3
##     1974        2
##     1975        2
##     1977        8
##     1978        2
##     1979        2
##     1980        1
##     1981        1
##     1982        2
##     1984        1
##     1985        1
##     1986        2
##     1988        1
##     1989        2
##     1990        1
##     1991        3
##     1992        2
##     1993        2
##     1994        3
##     1996        3
##     1997        2
##     1999        1
##     2000        2
##     2001        3
##     2002        3
##     2003        1
##     2004        2
##     2005        1
##     2006        5
##     2007       12
##     2008       12
##     2009       14
##     2010       13
##     2011       12
##     2012       11
##     2013       20
##     2014       16
##     2015       13
##     2016       18
##     2017       23
##     2018       48
##     2019       55
##     2020       11
## 
## Annual Percentage Growth Rate 3.484913 
## 
## 
## Most Productive Authors
## 
##     Authors        Articles  Authors        Articles Fractionalized
## 1  SUH YT                 7 VAIVRE-DOURET L                    4.50
## 2  VAIVRE-DOURET L        6 SUH YT                             3.33
## 3  VENETSANOU F           5 LATOUR AM                          3.00
## 4  ALBARET JM             4 VENETSANOU F                       2.33
## 5  KAMBAS A               4 BLETON JP                          2.00
## 6  MAANO C                4 FEUILLERAT B                       2.00
## 7  ORTEGA FZ              4 KAMBAS A                           2.00
## 8  DETREZ S               3 NA NA                              2.00
## 9  DI CATALDO C           3 SOULAYROL R                        2.00
## 10 JURADO PJ              3 ALBARET JM                         1.78
## 
## 
## Top manuscripts per citations
## 
##                                Paper          TC TCperYear
## 1  SOUNDY A, 2014, ARCH PSYCHIATR NURS        92     13.14
## 2  VANCAMPFORT D, 2010, PSYCHIATRY RES        91      8.27
## 3  VENETSANOU F, 2010, EARLY CHILD EDUC J     85      7.73
## 4  HIETANEN M, 1986, ACTA NEUROL SCAND        80      2.29
## 5  BARANEK GT, 2008, PHYS OCCUP THER PEDIATR  76      5.85
## 6  GLOSSER G, 1977, INT J NEUROSCI            66      1.50
## 7  BANKI CM, 1977, J NEUROCHEM                66      1.50
## 8  RHRICHT F, 2009, BODY MOV DANCE PSYCHOTHER 64      5.33
## 9  SOUNDY A, 2013, INT J THER REHABIL         44      5.50
## 10 PRAT G, 2008, ADDICT BEHAV                 38      2.92
## 
## 
## Corresponding Author's Countries
## 
##     Country Articles   Freq SCP MCP MCP_Ratio
## 1  FRANCE         80 0.3320  79   1    0.0125
## 2  SPAIN          37 0.1535  33   4    0.1081
## 3  ITALY          16 0.0664  15   1    0.0625
## 4  BRAZIL         13 0.0539  13   0    0.0000
## 5  KOREA          12 0.0498  12   0    0.0000
## 6  BELGIUM         9 0.0373   5   4    0.4444
## 7  GREECE          9 0.0373   8   1    0.1111
## 8  CANADA          7 0.0290   5   2    0.2857
## 9  MEXICO          7 0.0290   7   0    0.0000
## 10 PORTUGAL        6 0.0249   3   3    0.5000
## 
## 
## SCP: Single Country Publications
## 
## MCP: Multiple Country Publications
## 
## 
## Total Citations per Country
## 
##      Country      Total Citations Average Article Citations
## 1  FRANCE                     170                     2.125
## 2  ITALY                      126                     7.875
## 3  BELGIUM                    124                    13.778
## 4  UNITED KINGDOM             114                    38.000
## 5  GREECE                      98                    10.889
## 6  USA                         85                    17.000
## 7  SPAIN                       83                     2.243
## 8  FINLAND                     80                    80.000
## 9  HUNGARY                     66                    66.000
## 10 BRAZIL                      42                     3.231
## 
## 
## Most Relevant Sources
## 
##                                                         Sources        Articles
## 1  NEUROPSYCHIATRIE DE L'ENFANCE ET DE L'ADOLESCENCE                         19
## 2  ANAE - APPROCHE NEUROPSYCHOLOGIQUE DES APPRENTISSAGES CHEZ L'ENFANT       15
## 3  JOURNAL OF SPORT AND HEALTH RESEARCH                                      12
## 4  RETOS                                                                     11
## 5  ENFANCES ET PSY                                                            6
## 6  SOINS PEDIATRIE/PUERICULTURE                                               6
## 7  BODY MOVEMENT AND DANCE IN PSYCHOTHERAPY                                   5
## 8  MOTRICIDADE                                                                5
## 9  RESEARCH IN DEVELOPMENTAL DISABILITIES                                     5
## 10 EARLY CHILD DEVELOPMENT AND CARE                                           4
## 
## 
## Most Relevant Keywords
## 
##    Author Keywords (DE)      Articles  Keywords-Plus (ID)     Articles
## 1         PSYCHOMOTRICITY          80 HUMAN                        172
## 2         PHYSICAL EDUCATION       15 CHILD                        120
## 3         PHYSICAL ACTIVITY        14 FEMALE                       111
## 4         CHILDREN                 13 MALE                         110
## 5         BODY                     12 ARTICLE                      101
## 6         MOTOR SKILLS             10 HUMANS                        61
## 7         REHABILITATION            8 PSYCHOMOTOR PERFORMANCE       38
## 8         HEALTH                    7 AGED                          37
## 9         ANXIETY                   6 ADULT                         36
## 10        ASSESSMENT                6 ADOLESCENT                    35

Análise das referências citadas

M$CR[1]
## [1] NA
CR1 <- citations(M, field = "article", sep = ";")     # To obtain the most frequent cited manuscripts
cbind(CR1$Cited[1:10])
##                                                                                                                                                                                                                                                                                                         [,1]
## ABDELAZIZ, H.A., FROM CONTENT ENGAGEMENT TO COGNITIVE ENGAGEMENT: TOWARD AN IMMERSIVE WEB-BASED LEARNING MODEL TO DEVELOP SELF-QUESTIONING AND SELF-STUDY SKILLS (2013) INTERNATIONAL JOURNAL OF TECHNOLOGY DIFFUSION, 4 (1), PP. 16-32                                                                    3
## ACHA, V., HARGISS, K.M., HOWARD, C., THE RELATIONSHIP BETWEEN EMOTIONAL INTELLIGENCE OF A LEADER AND EMPLOYEE MOTIVATION TO JOB PERFORMANCE (2013) INTERNATIONAL JOURNAL OF STRATEGIC INFORMATION TECHNOLOGY AND APPLICATIONS, 4 (4), PP. 80-103                                                           3
## AGRAWAL, P.R., DIGITAL INFORMATION MANAGEMENT: PRESERVING TOMORROW'S MEMORY (2014) CLOUD COMPUTING AND VIRTUALIZATION TECHNOLOGIES IN LIBRARIES, PP. 22-35. , S. DHAMDHERE (ED.), HERSHEY, PA: IGI GLOBAL                                                                                                  3
## AKRAM, H.A., MAHMOOD, A., PREDICTING PERSONALITY TRAITS, GENDER AND PSYCHOPATH BEHAVIOR OF TWITTER USERS (2014) INTERNATIONAL JOURNAL OF TECHNOLOGY DIFFUSION, 5 (2), PP. 1-14                                                                                                                             3
## AKYOL, Z., METACOGNITIVE DEVELOPMENT WITHIN THE COMMUNITY OF INQUIRY (2013) EDUCATIONAL COMMUNITIES OF INQUIRY: THEORETICAL FRAMEWORK, RESEARCH AND PRACTICE, PP. 30-44. , Z. AKYOL & D. GARRISON (EDS.), HERSHEY, PA: IGI GLOBAL                                                                          3
## ALLY, M., DESIGNING MOBILE LEARNING FOR THE USER (2012) USER INTERFACE DESIGN FOR VIRTUAL ENVIRONMENTS: CHALLENGES AND ADVANCES, PP. 226-235. , B. KHAN (ED.), HERSHEY, PA: IGI GLOBAL                                                                                                                     3
## ALMEIDA, L., MENEZES, P., DIAS, J., AUGMENTED REALITY FRAMEWORK FOR THE SOCIALIZATION BETWEEN ELDERLY PEOPLE (2013) HANDBOOK OF RESEARCH ON ICTS FOR HUMAN-CENTERED HEALTHCARE AND SOCIAL CARE SERVICES, PP. 430-448. , M. CRUZ-CUNHA, I. MIRANDA, & P. GONALVES (EDS.), HERSHEY, PA: IGI GLOBAL           3
## ALONSO, E., MONDRAGN, E., COMPUTATIONAL MODELS OF LEARNING AND BEYOND: SYMMETRIES OF ASSOCIATIVE LEARNING (2011) COMPUTATIONAL NEUROSCIENCE FOR ADVANCING ARTIFICIAL INTELLIGENCE: MODELS, METHODS AND APPLICATIONS, PP. 316-332. , E. ALONSO & E. MONDRAGN (EDS.), HERSHEY, PA: IGI GLOBAL                3
## ARORA, A.S., RAISINGHANI, M.S., LESEANE, R., THOMPSON, L., PERSONALITY SCALES AND LEARNING STYLES: PEDAGOGY FOR CREATING AN ADAPTIVE WEB-BASED LEARNING SYSTEM (2013) CURRICULUM, LEARNING, AND TEACHING ADVANCEMENTS IN ONLINE EDUCATION, PP. 161-182. , M. RAISINGHANI (ED.), HERSHEY, PA: IGI GLOBAL    3
## ASTON, J., DATABASE NARRATIVE, SPATIAL MONTAGE, AND THE CULTURAL TRANSMISSION OF MEMORY: AN ANTHROPOLOGICAL PERSPECTIVE (2013) DIGITAL MEDIA AND TECHNOLOGIES FOR VIRTUAL ARTISTIC SPACES, PP. 150-158. , D. HARRISON (ED.), HERSHEY, PA: IGI GLOBAL                                                       3
CR2 <- citations(M, field = "author", sep = ";")      # To obtain the most frequent cited first authors
cbind(CR2$Cited[1:10])
##              [,1]
## CAROTENUTO M   76
## ESPOSITO M     68
## KAMBAS A       64
## VENETSANOU F   50
## ZIMMER R       43
## WANG Y         38
## TOUS J M       37
## LIUTSKO L      36
## SIMONS J       32
## BARNETT L M    31

Authors’ Dominance ranking

DF <- dominance(results, k = 10)
DF
##             Author Dominance Factor Tot Articles Single-Authored Multi-Authored First-Authored Rank by Articles
## 1     VENETSANOU F        0.8000000            5               0              5              4                8
## 2          MAANO C        0.7500000            4               0              4              3                7
## 3  VAIVRE-DOURET L        0.6666667            6               3              3              2                9
## 4     DI CATALDO C        0.6666667            3               0              3              2                1
## 5        LIUTSKO L        0.6666667            3               0              3              2                1
## 6       PARNETTI L        0.6666667            3               0              3              2                1
## 7           SUH YT        0.4285714            7               0              7              3               10
## 8        JURADO PJ        0.3333333            3               0              3              1                1
## 9         PROBST M        0.3333333            3               0              3              1                1
## 10       RUBERTO M        0.3333333            3               0              3              1                1
##    Rank by DF
## 1           1
## 2           2
## 3           3
## 4           3
## 5           3
## 6           3
## 7           7
## 8           8
## 9           8
## 10          8

h-index 10 authors

authors=gsub(","," ",names(results$Authors)[1:10])
indices <- Hindex(M, field = "author", elements=authors, sep = ";", years = 50)
indices$H
##             Author h_index g_index    m_index  TC NP PY_start
## 1           SUH YT       1       1 0.20000000   3  7     2016
## 2  VAIVRE-DOURET L       2       3 0.08333333  14  6     1997
## 3     VENETSANOU F       3       5 0.27272727 104  5     2010
## 4       ALBARET JM       1       1 0.14285714   3  4     2014
## 5         KAMBAS A       3       4 0.27272727 102  4     2010
## 6          MAANO C       1       3 0.16666667  12  4     2015
## 7        ORTEGA FZ       2       2 0.50000000   4  4     2017
## 8         DETREZ S       0       0 0.00000000   0  3     2012
## 9     DI CATALDO C       0       0 0.00000000   0  3     2012
## 10       JURADO PJ       0       0 0.00000000   0  3     2019

Author’ h-index

indices <- Hindex(M, field = "author", elements="VENETSANOU F", sep = ";", years = 50) # need to change authors name

VENETSANOU F’s impact indices:

indices$H
##         Author h_index g_index   m_index  TC NP PY_start
## 1 VENETSANOU F       3       5 0.2727273 104  5     2010

VENETSANOU F’s citations

indices$CitationList
## [[1]]
##                          Authors                        Journal Year TotalCitation
## 1 KARACHLE N;DANIA A;VENETSANOU   SCIENCE OF GYMNASTICS JOURNAL 2017             2
## 3          VENETSANOU F;KAMBAS A EARLY CHILDHOOD EDUCATION JOUR 2017             3
## 5          VENETSANOU F;KAMBAS A                      SAGE OPEN 2016             4
## 4          VENETSANOU F;KAMBAS A     PEDIATRIC EXERCISE SCIENCE 2017            10
## 2          VENETSANOU F;KAMBAS A EARLY CHILDHOOD EDUCATION JOUR 2010            85

Lptkas law

# Lotkas Law coefficient estimation
L <- lotka(results)
# Author Productivity. Empirical Distribution
L$AuthorProd
##   N.Articles N.Authors        Freq
## 1          1       897 0.903323263
## 2          2        77 0.077542800
## 3          3        12 0.012084592
## 4          4         4 0.004028197
## 5          5         1 0.001007049
## 6          6         1 0.001007049
## 7          7         1 0.001007049
lokta_table <- matrix(c(L$Beta, L$C, L$R2, L$p.value), ncol = 1, byrow = TRUE)
colnames(lokta_table) <- "Estimation"
rownames(lokta_table) <- c("Beta: ", "Constant: ", "Goodness of fit: ", "P-value: ")
lokta_table <- as.table(lokta_table)
print(lokta_table)
##                   Estimation
## Beta:             3.77514112
## Constant:         0.85368328
## Goodness of fit:  0.97835669
## P-value:          0.05623007

Compare the two distributions using plot function:

# Observed distribution
Observed=L$AuthorProd[,3]
# Theoretical distribution with Beta = 2
Theoretical=10^(log10(L$C)-2*log10(L$AuthorProd[,1]))

Scientific Production

plot(L$AuthorProd[,1],Theoretical,type="l",col="red",ylim=c(0, 1), xlab="Articles",ylab="Freq. of Authors",main="Scientific Productivity")
lines(L$AuthorProd[,1],Observed,col="blue")
legend(x="topright",c("Theoretical (B=2)","Observed"),col=c("red","blue"),lty = c(1,1,1),cex=0.6,bty="n")

Coupling

# Bibliographic coupling
NetMatrix <- biblioNetwork(M, analysis = "coupling", network = "authors", sep = ";")
# plot authors' similarity (first 20 authors), using salton similarity index
net <- networkPlot(NetMatrix,  normalize = "salton", weighted=NULL, n = 100, Title = "Authors' Coupling", type = "fruchterman", size=5,size.cex=T,remove.multiple=TRUE,labelsize=0.8,label.n=10,label.cex=F)

Co-citation

# Bibliographic co-citation
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ".  ")
net <- networkPlot(NetMatrix, n = 20, type = "kamada", Title = "co-citation", labelsize = 1.0)

Collaboration

# Bibliographic collaboration
# authors' collaboration network:
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "authors", sep = ";")
net <- networkPlot(NetMatrix, n = 20, type = "kamada", Title = "Author collaboration", labelsize = 1.0)

Country collaboration

# Create a country collaboration network
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "countries", sep = ";")
# Plot the network
net <- networkPlot(NetMatrix, n = dim(NetMatrix)[1], Title = "Country Collaboration", type = 'circle', size = TRUE, remove.multiple = FALSE, labelsize = 0.8)

Keyword co-occurrences

# Create keyword co-occurrencies network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
# Plot the network
net <- networkPlot(NetMatrix, normalize="association", weighted=T, n = 30, Title = "Keyword Co-occurrences", type = "fruchterman", size=T,edgesize = 5,labelsize=0.7)

Co-word analysis:

# Conceptual Structure using keywords
CS <- conceptualStructure(M,field="DE_TM", minDegree = 5, k.max = 5, stemming = FALSE, labelsize = 9)

CS <- conceptualStructure(M,field="ID", method="CA", minDegree=4, clust=5, stemming=FALSE, labelsize=10, documents=10)

Table: Author’s productivity per year

# AuthorProdOverTime, fig.height=6, fig.width=8
topAU <- authorProdOverTime(M, k = 10, graph = TRUE)

Table: Auhtor’s documents list

# AuthorProdOverTime, fig.height=6, fig.width=8
head(topAU$dfAU)
##       Author year freq TC      TCpY
## 1 ALBARET JM 2014    1  2 0.2857143
## 2 ALBARET JM 2015    1  1 0.1666667
## 3 ALBARET JM 2017    1  0 0.0000000
## 4 ALBARET JM 2018    1  0 0.0000000
## 5   DETREZ S 2012    1  0 0.0000000
## 6   DETREZ S 2013    1  0 0.0000000
#head(topAU$dfPapersAU)

Bipartite network

A <- cocMatrix(M, Field = "SO", sep = ";")
sort(Matrix::colSums(A), decreasing = TRUE)[1:5]
##                   NEUROPSYCHIATRIE DE L'ENFANCE ET DE L'ADOLESCENCE 
##                                                                  19 
## ANAE - APPROCHE NEUROPSYCHOLOGIQUE DES APPRENTISSAGES CHEZ L'ENFANT 
##                                                                  15 
##                                JOURNAL OF SPORT AND HEALTH RESEARCH 
##                                                                  12 
##                                                               RETOS 
##                                                                  11 
##                                        SOINS PEDIATRIE/PUERICULTURE 
##                                                                   6
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")

NetMatrix

# similarity, fig.height=9, fig.width=9, warning=FALSE
NetMatrix <- biblioNetwork(M, analysis = "coupling", network = "authors", sep = ";")
net=networkPlot(NetMatrix,  normalize = "salton", weighted=NULL, n = 100, Title = "Authors' Coupling", type = "fruchterman", size=5,size.cex=T,remove.multiple=TRUE,labelsize=0.8,label.n=10,label.cex=F)

Netmatrix

# An example of a classical keyword co-occurrences network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
netstat <- networkStat(NetMatrix)
names(netstat$network)
##  [1] "networkSize"             "networkDensity"          "networkTransitivity"     "networkDiameter"        
##  [5] "networkDegreeDist"       "networkCentrDegree"      "networkCentrCloseness"   "networkCentrEigen"      
##  [9] "networkCentrbetweenness" "NetworkAverPathLeng"
names(netstat$vertex)
## NULL
summary(netstat, k=10)
## 
## 
## Main statistics about the network
## 
##  Size                                  1387 
##  Density                               0.033 
##  Transitivity                          0.253 
##  Diameter                              5 
##  Degree Centralization                 0.833 
##  Average path length                   2.109 
## 

Country collaboration

# Create a country collaboration network
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "countries", sep = ";")
# Plot the network
net=networkPlot(NetMatrix, n = dim(NetMatrix)[1], Title = "Country Collaboration", type = "circle", size=TRUE, remove.multiple=FALSE,labelsize=0.7,cluster="none")

Co-citation network, fig.height=7, fig.width=7, warning=FALSE

# Create a co-citation network
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ";")
# Plot the network
net=networkPlot(NetMatrix, n = 30, Title = "Co-Citation Network", type = "fruchterman", size=T, remove.multiple=FALSE, labelsize=0.7,edgesize = 5)

—-Keyword c-occurrences

# Create keyword co-occurrences network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
# Plot the network
net=networkPlot(NetMatrix, normalize="association", weighted=T, n = 30, Title = "Keyword Co-occurrences", type = "fruchterman", size=T,edgesize = 5,labelsize=0.7)