library(tidyverse)
## ── Attaching packages ───── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1     ✓ purrr   0.3.3
## ✓ tibble  2.1.3     ✓ dplyr   0.8.3
## ✓ tidyr   1.0.0     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.4.0
## ── Conflicts ──────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
table1
## # A tibble: 6 x 4
##   country      year  cases population
##   <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

This code shows table 1, which has 4 variables: country, year, cases, and population.

table2
## # A tibble: 12 x 4
##    country      year type            count
##    <chr>       <int> <chr>           <int>
##  1 Afghanistan  1999 cases             745
##  2 Afghanistan  1999 population   19987071
##  3 Afghanistan  2000 cases            2666
##  4 Afghanistan  2000 population   20595360
##  5 Brazil       1999 cases           37737
##  6 Brazil       1999 population  172006362
##  7 Brazil       2000 cases           80488
##  8 Brazil       2000 population  174504898
##  9 China        1999 cases          212258
## 10 China        1999 population 1272915272
## 11 China        2000 cases          213766
## 12 China        2000 population 1280428583

This shows table 2 which shows the same data in a different way.

table3
## # A tibble: 6 x 3
##   country      year rate             
## * <chr>       <int> <chr>            
## 1 Afghanistan  1999 745/19987071     
## 2 Afghanistan  2000 2666/20595360    
## 3 Brazil       1999 37737/172006362  
## 4 Brazil       2000 80488/174504898  
## 5 China        1999 212258/1272915272
## 6 China        2000 213766/1280428583

This shows table 3 which again shows the variables in a different way.

table4a
## # A tibble: 3 x 3
##   country     `1999` `2000`
## * <chr>        <int>  <int>
## 1 Afghanistan    745   2666
## 2 Brazil       37737  80488
## 3 China       212258 213766

This shows table 4 which is 1 tibble.

table4b
## # A tibble: 3 x 3
##   country         `1999`     `2000`
## * <chr>            <int>      <int>
## 1 Afghanistan   19987071   20595360
## 2 Brazil       172006362  174504898
## 3 China       1272915272 1280428583

This shows table which is tibble 2 of 4.

table1 %>% 
  mutate(rate = cases / population * 10000)
## # A tibble: 6 x 5
##   country      year  cases population  rate
##   <chr>       <int>  <int>      <int> <dbl>
## 1 Afghanistan  1999    745   19987071 0.373
## 2 Afghanistan  2000   2666   20595360 1.29 
## 3 Brazil       1999  37737  172006362 2.19 
## 4 Brazil       2000  80488  174504898 4.61 
## 5 China        1999 212258 1272915272 1.67 
## 6 China        2000 213766 1280428583 1.67

This code shows the rate per 10,000.

# Compute cases per year
table1 %>% 
  count(year, wt = cases)
## # A tibble: 2 x 2
##    year      n
##   <int>  <int>
## 1  1999 250740
## 2  2000 296920

This code computes the cases per year.

# Visualise changes over time
library(ggplot2)
ggplot(table1, aes(year, cases)) + 
  geom_line(aes(group = country), colour = "grey50") + 
  geom_point(aes(colour = country))

This code shhows a visual of changes ovre time in cases per year.

table4a
## # A tibble: 3 x 3
##   country     `1999` `2000`
## * <chr>        <int>  <int>
## 1 Afghanistan    745   2666
## 2 Brazil       37737  80488
## 3 China       212258 213766

This shows table 4 shows values of variables instead of names.

table4a %>% 
  pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
## # A tibble: 6 x 3
##   country     year   cases
##   <chr>       <chr>  <int>
## 1 Afghanistan 1999     745
## 2 Afghanistan 2000    2666
## 3 Brazil      1999   37737
## 4 Brazil      2000   80488
## 5 China       1999  212258
## 6 China       2000  213766

This code drops the pivoted columns and shows the near year and case columns.

table4b %>% 
  pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")
## # A tibble: 6 x 3
##   country     year  population
##   <chr>       <chr>      <int>
## 1 Afghanistan 1999    19987071
## 2 Afghanistan 2000    20595360
## 3 Brazil      1999   172006362
## 4 Brazil      2000   174504898
## 5 China       1999  1272915272
## 6 China       2000  1280428583

This code tidies the data.

tidy4a <- table4a %>% 
  pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
tidy4b <- table4b %>% 
  pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")
left_join(tidy4a, tidy4b)
## Joining, by = c("country", "year")
## # A tibble: 6 x 4
##   country     year   cases population
##   <chr>       <chr>  <int>      <int>
## 1 Afghanistan 1999     745   19987071
## 2 Afghanistan 2000    2666   20595360
## 3 Brazil      1999   37737  172006362
## 4 Brazil      2000   80488  174504898
## 5 China       1999  212258 1272915272
## 6 China       2000  213766 1280428583

This code combines the tidied versions of table 4a and table 4b.

table2
## # A tibble: 12 x 4
##    country      year type            count
##    <chr>       <int> <chr>           <int>
##  1 Afghanistan  1999 cases             745
##  2 Afghanistan  1999 population   19987071
##  3 Afghanistan  2000 cases            2666
##  4 Afghanistan  2000 population   20595360
##  5 Brazil       1999 cases           37737
##  6 Brazil       1999 population  172006362
##  7 Brazil       2000 cases           80488
##  8 Brazil       2000 population  174504898
##  9 China        1999 cases          212258
## 10 China        1999 population 1272915272
## 11 China        2000 cases          213766
## 12 China        2000 population 1280428583

This shows table 2 which scatters a country in a year across two rows.

table2 %>%
    pivot_wider(names_from = type, values_from = count)
## # A tibble: 6 x 4
##   country      year  cases population
##   <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

This makes the table longer.

table3
## # A tibble: 6 x 3
##   country      year rate             
## * <chr>       <int> <chr>            
## 1 Afghanistan  1999 745/19987071     
## 2 Afghanistan  2000 2666/20595360    
## 3 Brazil       1999 37737/172006362  
## 4 Brazil       2000 80488/174504898  
## 5 China        1999 212258/1272915272
## 6 China        2000 213766/1280428583

This shows table 3.

table3 %>% 
  separate(rate, into = c("cases", "population"))
## # A tibble: 6 x 4
##   country      year cases  population
##   <chr>       <int> <chr>  <chr>     
## 1 Afghanistan  1999 745    19987071  
## 2 Afghanistan  2000 2666   20595360  
## 3 Brazil       1999 37737  172006362 
## 4 Brazil       2000 80488  174504898 
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

This seperates cases and population variables.

table3 %>% 
  separate(rate, into = c("cases", "population"), convert = TRUE)
## # A tibble: 6 x 4
##   country      year  cases population
##   <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

This rewrites the code above.

table3 %>% 
  separate(year, into = c("century", "year"), sep = 2)
## # A tibble: 6 x 4
##   country     century year  rate             
##   <chr>       <chr>   <chr> <chr>            
## 1 Afghanistan 19      99    745/19987071     
## 2 Afghanistan 20      00    2666/20595360    
## 3 Brazil      19      99    37737/172006362  
## 4 Brazil      20      00    80488/174504898  
## 5 China       19      99    212258/1272915272
## 6 China       20      00    213766/1280428583

This converts them into better types.

table5 %>% 
  unite(new, century, year)
## # A tibble: 6 x 3
##   country     new   rate             
##   <chr>       <chr> <chr>            
## 1 Afghanistan 19_99 745/19987071     
## 2 Afghanistan 20_00 2666/20595360    
## 3 Brazil      19_99 37737/172006362  
## 4 Brazil      20_00 80488/174504898  
## 5 China       19_99 212258/1272915272
## 6 China       20_00 213766/1280428583

This shows table 5.

table5 %>% 
  unite(new, century, year, sep = "")
## # A tibble: 6 x 3
##   country     new   rate             
##   <chr>       <chr> <chr>            
## 1 Afghanistan 1999  745/19987071     
## 2 Afghanistan 2000  2666/20595360    
## 3 Brazil      1999  37737/172006362  
## 4 Brazil      2000  80488/174504898  
## 5 China       1999  212258/1272915272
## 6 China       2000  213766/1280428583

This code places an undersocre between values from different columns.

stocks <- tibble(
  year   = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr    = c(   1,    2,    3,    4,    2,    3,    4),
  return = c(1.88, 0.59, 0.35,   NA, 0.92, 0.17, 2.66)
)

This shhows a table with missing values.

stocks %>% 
  pivot_wider(names_from = year, values_from = return)
## # A tibble: 4 x 3
##     qtr `2015` `2016`
##   <dbl>  <dbl>  <dbl>
## 1     1   1.88  NA   
## 2     2   0.59   0.92
## 3     3   0.35   0.17
## 4     4  NA      2.66

this code makes the implicit missing value explicit by putting years into columns.

stocks %>% 
  pivot_wider(names_from = year, values_from = return) %>% 
  pivot_longer(
    cols = c(`2015`, `2016`), 
    names_to = "year", 
    values_to = "return", 
    values_drop_na = TRUE
  )
## # A tibble: 6 x 3
##     qtr year  return
##   <dbl> <chr>  <dbl>
## 1     1 2015    1.88
## 2     2 2015    0.59
## 3     2 2016    0.92
## 4     3 2015    0.35
## 5     3 2016    0.17
## 6     4 2016    2.66

This turns explicit missing values implicit.

stocks %>% 
  complete(year, qtr)
## # A tibble: 8 x 3
##    year   qtr return
##   <dbl> <dbl>  <dbl>
## 1  2015     1   1.88
## 2  2015     2   0.59
## 3  2015     3   0.35
## 4  2015     4  NA   
## 5  2016     1  NA   
## 6  2016     2   0.92
## 7  2016     3   0.17
## 8  2016     4   2.66

This takes a set of columns finds all the unique combinations and ensures the original dataset contains all these values filling in explicit NA where needed.

treatment <- tribble(
  ~ person,           ~ treatment, ~response,
  "Derrick Whitmore", 1,           7,
  NA,                 2,           10,
  NA,                 3,           9,
  "Katherine Burke",  1,           4
)

treatment %>% 
  fill(person)
## # A tibble: 4 x 3
##   person           treatment response
##   <chr>                <dbl>    <dbl>
## 1 Derrick Whitmore         1        7
## 2 Derrick Whitmore         2       10
## 3 Derrick Whitmore         3        9
## 4 Katherine Burke          1        4

This demonstartes when missing values are just where the previous value should be carried down.And then carries thhe mission person down.

tidyr::who
## # A tibble: 7,240 x 60
##    country iso2  iso3   year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544
##    <chr>   <chr> <chr> <int>       <int>        <int>        <int>        <int>
##  1 Afghan… AF    AFG    1980          NA           NA           NA           NA
##  2 Afghan… AF    AFG    1981          NA           NA           NA           NA
##  3 Afghan… AF    AFG    1982          NA           NA           NA           NA
##  4 Afghan… AF    AFG    1983          NA           NA           NA           NA
##  5 Afghan… AF    AFG    1984          NA           NA           NA           NA
##  6 Afghan… AF    AFG    1985          NA           NA           NA           NA
##  7 Afghan… AF    AFG    1986          NA           NA           NA           NA
##  8 Afghan… AF    AFG    1987          NA           NA           NA           NA
##  9 Afghan… AF    AFG    1988          NA           NA           NA           NA
## 10 Afghan… AF    AFG    1989          NA           NA           NA           NA
## # … with 7,230 more rows, and 52 more variables: new_sp_m4554 <int>,
## #   new_sp_m5564 <int>, new_sp_m65 <int>, new_sp_f014 <int>,
## #   new_sp_f1524 <int>, new_sp_f2534 <int>, new_sp_f3544 <int>,
## #   new_sp_f4554 <int>, new_sp_f5564 <int>, new_sp_f65 <int>,
## #   new_sn_m014 <int>, new_sn_m1524 <int>, new_sn_m2534 <int>,
## #   new_sn_m3544 <int>, new_sn_m4554 <int>, new_sn_m5564 <int>,
## #   new_sn_m65 <int>, new_sn_f014 <int>, new_sn_f1524 <int>,
## #   new_sn_f2534 <int>, new_sn_f3544 <int>, new_sn_f4554 <int>,
## #   new_sn_f5564 <int>, new_sn_f65 <int>, new_ep_m014 <int>,
## #   new_ep_m1524 <int>, new_ep_m2534 <int>, new_ep_m3544 <int>,
## #   new_ep_m4554 <int>, new_ep_m5564 <int>, new_ep_m65 <int>,
## #   new_ep_f014 <int>, new_ep_f1524 <int>, new_ep_f2534 <int>,
## #   new_ep_f3544 <int>, new_ep_f4554 <int>, new_ep_f5564 <int>,
## #   new_ep_f65 <int>, newrel_m014 <int>, newrel_m1524 <int>,
## #   newrel_m2534 <int>, newrel_m3544 <int>, newrel_m4554 <int>,
## #   newrel_m5564 <int>, newrel_m65 <int>, newrel_f014 <int>,
## #   newrel_f1524 <int>, newrel_f2534 <int>, newrel_f3544 <int>,
## #   newrel_f4554 <int>, newrel_f5564 <int>, newrel_f65 <int>

This shows the database of TB cases broken down by year, country, age, gender, and diagnosis method.

who1 <- who %>% 
  pivot_longer(
    cols = new_sp_m014:newrel_f65, 
    names_to = "key", 
    values_to = "cases", 
    values_drop_na = TRUE
  )
who1
## # A tibble: 76,046 x 6
##    country     iso2  iso3   year key          cases
##    <chr>       <chr> <chr> <int> <chr>        <int>
##  1 Afghanistan AF    AFG    1997 new_sp_m014      0
##  2 Afghanistan AF    AFG    1997 new_sp_m1524    10
##  3 Afghanistan AF    AFG    1997 new_sp_m2534     6
##  4 Afghanistan AF    AFG    1997 new_sp_m3544     3
##  5 Afghanistan AF    AFG    1997 new_sp_m4554     5
##  6 Afghanistan AF    AFG    1997 new_sp_m5564     2
##  7 Afghanistan AF    AFG    1997 new_sp_m65       0
##  8 Afghanistan AF    AFG    1997 new_sp_f014      5
##  9 Afghanistan AF    AFG    1997 new_sp_f1524    38
## 10 Afghanistan AF    AFG    1997 new_sp_f2534    36
## # … with 76,036 more rows

This focuses on the values thhat are present.

who1 %>% 
  count(key)
## # A tibble: 56 x 2
##    key              n
##    <chr>        <int>
##  1 new_ep_f014   1032
##  2 new_ep_f1524  1021
##  3 new_ep_f2534  1021
##  4 new_ep_f3544  1021
##  5 new_ep_f4554  1017
##  6 new_ep_f5564  1017
##  7 new_ep_f65    1014
##  8 new_ep_m014   1038
##  9 new_ep_m1524  1026
## 10 new_ep_m2534  1020
## # … with 46 more rows

This counts the values in the new key column.

who2 <- who1 %>% 
  mutate(names_from = stringr::str_replace(key, "newrel", "new_rel"))
who2
## # A tibble: 76,046 x 7
##    country     iso2  iso3   year key          cases names_from  
##    <chr>       <chr> <chr> <int> <chr>        <int> <chr>       
##  1 Afghanistan AF    AFG    1997 new_sp_m014      0 new_sp_m014 
##  2 Afghanistan AF    AFG    1997 new_sp_m1524    10 new_sp_m1524
##  3 Afghanistan AF    AFG    1997 new_sp_m2534     6 new_sp_m2534
##  4 Afghanistan AF    AFG    1997 new_sp_m3544     3 new_sp_m3544
##  5 Afghanistan AF    AFG    1997 new_sp_m4554     5 new_sp_m4554
##  6 Afghanistan AF    AFG    1997 new_sp_m5564     2 new_sp_m5564
##  7 Afghanistan AF    AFG    1997 new_sp_m65       0 new_sp_m65  
##  8 Afghanistan AF    AFG    1997 new_sp_f014      5 new_sp_f014 
##  9 Afghanistan AF    AFG    1997 new_sp_f1524    38 new_sp_f1524
## 10 Afghanistan AF    AFG    1997 new_sp_f2534    36 new_sp_f2534
## # … with 76,036 more rows

This makes all variable names constant.

who3 <- who2 %>% 
separate(key, c("new", "type", "sexage"), sep = "_")
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 2580 rows [243,
## 244, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 903,
## 904, 905, 906, ...].

This seperates the values at each underscore.

who3 %>% 
  count(new)
## # A tibble: 2 x 2
##   new        n
##   <chr>  <int>
## 1 new    73466
## 2 newrel  2580
who4 <- who3 %>% 
  select(-new, -iso2, -iso3)

This drops the new column into the dataset.

who5 <- who4 %>% 
  separate(sexage, c("sex", "age"), sep = 1)
who5
## # A tibble: 76,046 x 7
##    country      year type  sex   age   cases names_from  
##    <chr>       <int> <chr> <chr> <chr> <int> <chr>       
##  1 Afghanistan  1997 sp    m     014       0 new_sp_m014 
##  2 Afghanistan  1997 sp    m     1524     10 new_sp_m1524
##  3 Afghanistan  1997 sp    m     2534      6 new_sp_m2534
##  4 Afghanistan  1997 sp    m     3544      3 new_sp_m3544
##  5 Afghanistan  1997 sp    m     4554      5 new_sp_m4554
##  6 Afghanistan  1997 sp    m     5564      2 new_sp_m5564
##  7 Afghanistan  1997 sp    m     65        0 new_sp_m65  
##  8 Afghanistan  1997 sp    f     014       5 new_sp_f014 
##  9 Afghanistan  1997 sp    f     1524     38 new_sp_f1524
## 10 Afghanistan  1997 sp    f     2534     36 new_sp_f2534
## # … with 76,036 more rows

This seperates sexage into sex and age.