In this blog post, I am gonna talk about the ggplot2. ggplot2 is based on the idea “grammer of graphics” which means a graphs can be build from same basic components like : Data, Geoms (Marks or points that represents the data point) and a coordinate system (x, y, z etc).
And with ggplot2 you can also play with aesthetics of geoms like size, color, location/position of your data points on coordinate system using “aes” argument.
So, lets make some plots and while going through the plottings, I will try to explain the details of arguments and codes for plotting particular plot.
I am going to use inbuilt dataset “mtcars” and “mpg” for plotting.
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Before starting you need to install the package and if you already have the packages, you can load the same using “library” function or if you dont have then use “install.packages” and after that use “library” to load. Along with ggplot2, I also installed dplyr package as it gives you more power to mutate or filter your data and other interesting twitch and tweaks.
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
so, if you write something like ggplot(mtcars, aes(cyl,mpg)); it will mean mtcars is your data and for geom x= cyl and y= mpg.
mtcars %>% ggplot() + geom_density(aes(mpg))
1. (i) Lets say you want to fill the plot area with red color. Okay, before going to that, I want point out something important, so if you want to modify your geom or data points you need to use your arguments within aesthetic function, however if it is to modify the background of overal visual of the plot, you can use arguments outside of aes or aesthetic function.
so, for filling the density plot with red, we can modify our codes like:
mtcars %>% ggplot(aes()) + geom_density(aes(mpg), fill = "red")
mpg
## # A tibble: 234 x 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto~ f 18 29 p comp~
## 2 audi a4 1.8 1999 4 manu~ f 21 29 p comp~
## 3 audi a4 2 2008 4 manu~ f 20 31 p comp~
## 4 audi a4 2 2008 4 auto~ f 21 30 p comp~
## 5 audi a4 2.8 1999 6 auto~ f 16 26 p comp~
## 6 audi a4 2.8 1999 6 manu~ f 18 26 p comp~
## 7 audi a4 3.1 2008 6 auto~ f 18 27 p comp~
## 8 audi a4 q~ 1.8 1999 4 manu~ 4 18 26 p comp~
## 9 audi a4 q~ 1.8 1999 4 auto~ 4 16 25 p comp~
## 10 audi a4 q~ 2 2008 4 manu~ 4 20 28 p comp~
## # ... with 224 more rows
mpg %>% ggplot(aes(class)) + geom_bar()
mpg %>% ggplot(aes(class)) + geom_bar(aes(fill = drv))
mpg %>% ggplot(aes(class)) + geom_bar(aes(fill = drv), position = "dodge")
2(iii) how about flipping the coordinat? So here one thing to remember when you keep adding the functions in ggplot it should be added with “+” sign. so, here we are adding “coord_flip” with previous code.
mpg %>% ggplot(aes(class)) + geom_bar(aes(fill = drv), position = "dodge") + coord_flip()
Before wrapping up the post, how about we make a dataframe from scratch using some codes: So, here we made one student table with their name marks.
std.data <- data.frame(std_id = c(1:5),
std_name=c("Sam", "Rick", "Dan", "Ryan", "Rex"),
Marks = c(80, 85, 93, 95, 88))
print(std.data)
## std_id std_name Marks
## 1 1 Sam 80
## 2 2 Rick 85
## 3 3 Dan 93
## 4 4 Ryan 95
## 5 5 Rex 88