Legend: Renewable or Sustainable Energy and Machine Learning
if(!require("install.load")) {
install.packages("install.load")
library(install.load)
}
## Loading required package: install.load
install_load("dplyr","factoextra", "FactoMineR", "ggplot2", "igraph", "Matrix", "rscopus",
"SnowballC", "stringr", "bibliometrix")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
##
## as_data_frame, groups, union
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
## To cite bibliometrix in publications, please use:
##
## Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), pp 959-975, Elsevier.
##
##
## http:\\www.bibliometrix.org
##
##
## To start with the shiny web-interface, please digit:
## biblioshiny()
# Data loading
D <- readFiles("https://julialang.com.br/wp-content/uploads/2020/03/renewable_energy.bib")
head(D)
## [1] ""
## [2] "@CONFERENCE{Brody1997182,"
## [3] "author={Brody, A.W. and Boyd, E. and Olmsted, C.},"
## [4] "title={Generating high-resolution data using hints},"
## [5] "journal={Proceedings of SPIE - The International Society for Optical Engineering},"
## [6] "year={1997},"
# Data converting
M <- convert2df(D, dbsource = "scopus", format = "bibtex")
##
## Converting your scopus collection into a bibliographic dataframe
##
## Articles extracted 100
## Articles extracted 200
## Articles extracted 300
## Articles extracted 400
## Articles extracted 499
## Done!
##
##
## Generating affiliation field tag AU_UN from C1: Done!
# Results
results <- biblioAnalysis(M, sep = ";")
S <- summary(object = results, k = 10, pause = FALSE) # summary results
##
##
## Main Information about data
##
## Documents 499
## Sources (Journals, Books, etc.) 316
## Keywords Plus (ID) 3190
## Author's Keywords (DE) 1333
## Period 1997 - 2020
## Average citations per documents 6.04
##
## Authors 1562
## Author Appearances 1844
## Authors of single-authored documents 22
## Authors of multi-authored documents 1540
## Single-authored documents 37
##
## Documents per Author 0.319
## Authors per Document 3.13
## Co-Authors per Documents 3.7
## Collaboration Index 3.33
##
## Document types
## ARTICLE 216
## ARTICLE IN PRESS 4
## BOOK 1
## BOOK CHAPTER 11
## CONFERENCE PAPER 215
## CONFERENCE REVIEW 16
## DATA PAPER 2
## EDITORIAL 1
## NOTE 1
## REVIEW 31
## SHORT SURVEY 1
##
##
## Annual Scientific Production
##
## Year Articles
## 1997 1
## 1999 1
## 2008 1
## 2009 3
## 2010 4
## 2011 3
## 2012 1
## 2013 8
## 2014 20
## 2015 23
## 2016 31
## 2017 52
## 2018 99
## 2019 220
## 2020 32
##
## Annual Percentage Growth Rate 16.26294
##
##
## Most Productive Authors
##
## Authors Articles Authors Articles Fractionalized
## 1 NA NA 16 NA NA 16.00
## 2 DEO RC 7 JOSHUVA A 2.23
## 3 JOSHUVA A 6 SCARTEZZINI JL 1.83
## 4 SCARTEZZINI JL 6 SUGUMARAN V 1.83
## 5 WANG Y 6 DEO RC 1.59
## 6 ZHANG J 6 ASSOULINE D 1.58
## 7 ASSOULINE D 5 MOHAJERI N 1.58
## 8 MOHAJERI N 5 WANG Y 1.57
## 9 SALCEDO-SANZ S 5 KAKKAR A 1.50
## 10 ZHANG Y 5 SHARMA A 1.50
##
##
## Top manuscripts per citations
##
## Paper TC TCperYear
## 1 CHAOUACHI A, 2013, IEEE TRANS IND ELECTRON 359 44.88
## 2 GOLESTANEH F, 2016, IEEE TRANS POWER SYST 83 16.60
## 3 DAS UK, 2018, RENEWABLE SUSTAINABLE ENERGY REV 80 26.67
## 4 TABOR DP, 2018, NAT REV MATER 80 26.67
## 5 HU W, 2009, ACM TRANS SENS NETW 76 6.33
## 6 ZHANG Y, 2016, ENERGY CONVERS MANAGE 76 15.20
## 7 DERVILIS N, 2014, J SOUND VIB 69 9.86
## 8 ARDABILI SF, 2018, ENG APPL COMPUT FLUID MECH 64 21.33
## 9 YEH WC, 2014, INT J ELECTR POWER ENERGY SYST 58 8.29
## 10 ASSOULINE D, 2017, SOL ENERGY 56 14.00
##
##
## Corresponding Author's Countries
##
## Country Articles Freq SCP MCP MCP_Ratio
## 1 USA 46 0.1570 39 7 0.152
## 2 INDIA 29 0.0990 27 2 0.069
## 3 GERMANY 26 0.0887 23 3 0.115
## 4 CHINA 18 0.0614 18 0 0.000
## 5 SPAIN 13 0.0444 10 3 0.231
## 6 JAPAN 11 0.0375 9 2 0.182
## 7 KOREA 11 0.0375 9 2 0.182
## 8 UNITED KINGDOM 10 0.0341 7 3 0.300
## 9 HONG KONG 9 0.0307 3 6 0.667
## 10 ITALY 9 0.0307 6 3 0.333
##
##
## SCP: Single Country Publications
##
## MCP: Multiple Country Publications
##
##
## Total Citations per Country
##
## Country Total Citations Average Article Citations
## 1 JAPAN 379 34.455
## 2 USA 228 4.957
## 3 UNITED KINGDOM 131 13.100
## 4 SPAIN 94 7.231
## 5 INDIA 88 3.034
## 6 GERMANY 85 3.269
## 7 TAIWAN 63 21.000
## 8 CHINA 58 3.222
## 9 BRAZIL 57 19.000
## 10 SWITZERLAND 57 11.400
##
##
## Most Relevant Sources
##
## Sources
## 1 ENERGIES
## 2 APPLIED ENERGY
## 3 LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
## 4 RENEWABLE AND SUSTAINABLE ENERGY REVIEWS
## 5 APPLIED SCIENCES (SWITZERLAND)
## 6 ENERGY CONVERSION AND MANAGEMENT
## 7 IEEE ACCESS
## 8 ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING
## 9 ENERGY
## 10 SOLAR ENERGY
## Articles
## 1 19
## 2 12
## 3 10
## 4 9
## 5 8
## 6 7
## 7 7
## 8 6
## 9 6
## 10 6
##
##
## Most Relevant Keywords
##
## Author Keywords (DE) Articles Keywords-Plus (ID) Articles
## 1 MACHINE LEARNING 172 LEARNING SYSTEMS 257
## 2 RENEWABLE ENERGY 71 MACHINE LEARNING 197
## 3 SMART GRID 30 RENEWABLE ENERGY RESOURCES 150
## 4 FORECASTING 25 FORECASTING 141
## 5 ARTIFICIAL INTELLIGENCE 22 RENEWABLE ENERGIES 125
## 6 DEEP LEARNING 20 ARTIFICIAL INTELLIGENCE 107
## 7 REINFORCEMENT LEARNING 20 LEARNING ALGORITHMS 89
## 8 ARTIFICIAL NEURAL NETWORKS 16 SOLAR ENERGY 79
## 9 MICROGRID 15 WIND POWER 77
## 10 SUPPORT VECTOR REGRESSION 12 ELECTRIC POWER TRANSMISSION NETWORKS 73
plot(x = results, k = 10, pause = FALSE) # plot results
# Analysis of cited Rederences
M$CR[1]
## [1] "TUCKER, G., SLINGERLAND, R., PREDICTIVE SEDIMENT FLUX FROM FOLD AND THRUST BELTS (1995) BASIN RESEARCH SPECIAL VOLUME ON TECTONIC GEOMORPHOLOGY; WESSER, A., DEBEVEC, ARCTIC-STEPPE DISTRIBUTION THROUGH SPACE AND TIME: A MICROCLIMATE MODELING APPROACH (1995) BRIDGES OF SCIENCE; BOYD, E., BRODY, A., PICTURE ANALYSIS BY ADAPTIVE ALGORITHMS (1997) PROCEEDINGS OF ELECTRONIC IMAGING: SCIENCE AND TECHNOLOGY"
CR1 <- citations(M, field = "article", sep = ";") # To obtain the most frequent cited manuscripts
cbind(CR1$Cited[1:10])
## [,1]
## BREIMAN, L., RANDOM FORESTS (2001) MACHINE LEARNING, 45 (1), PP. 5-32 10
## MIT PRESS: CAMBRIDGE, MA, USA 6
## VAPNIK, V., (1995) THE NATURE OF STATISTICAL LEARNING THEORY, , SPRINGER, NEW YORK 6
## BACHER, P., MADSEN, H., NIELSEN, H.A., ONLINE SHORT-TERM SOLAR POWER FORECASTING (2009) SOLAR ENERGY, 83 (10), PP. 1772-1783 5
## DEO, R.C., WEN, X., QI, F., A WAVELET-COUPLED SUPPORT VECTOR MACHINE MODEL FOR FORECASTING GLOBAL INCIDENT SOLAR RADIATION USING LIMITED METEOROLOGICAL DATASET (2016) APPL ENERGY, 168, PP. 568-593 5
## HINTON, G.E., SALAKHUTDINOV, R.R., REDUCING THE DIMENSIONALITY OF DATA WITH NEURAL NETWORKS (2006) SCIENCE, 313 (5786), PP. 504-507 5
## HOCHREITER, S., SCHMIDHUBER, J., LONG SHORT-TERM MEMORY (1997) NEURAL COMPUTATION, 9 (8), PP. 1735-1780 5
## JOSHUVA, A., SUGUMARAN, V., AMARNATH, M., SELECTING KERNEL FUNCTION OF SUPPORT VECTOR MACHINE FOR FAULT DIAGNOSIS OF ROLLER BEARINGS USING SOUND SIGNALS THROUGH HISTOGRAM FEATURES (2015) INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, 10 (68), PP. 482-487 5
## SPRINGER BERLIN HEIDELBERG: BERLIN/HEIDELBERG, GERMANY 5
## , PP. 1-6 4
CR2 <- citations(M, field = "author", sep = ";") # To obtain the most frequent cited first authors
cbind(CR2$Cited[1:10])
## [,1]
## WANG Y 152
## WANG J 148
## LIU Y 146
## LI Y 144
## ZHANG J 127
## ZHANG Y 102
## CHEN Y 88
## DEO R C 87
## SALCEDO SANZ S 80
## WANG X 79
# This works only with wos data for now
# CR3 <- localCitations(M, sep = ";") # To obtain the most frequent local cited authors
# CR3$Authors[1:10,]
# CR3$Papers[1:10,]
# Authors' Dominance ranking
DF <- dominance(results, k = 10)
DF
## Author Dominance Factor Tot Articles Single-Authored Multi-Authored First-Authored Rank by Articles
## 1 JOSHUVA A 1.0000000 6 0 6 6 8
## 2 ASSOULINE D 1.0000000 5 0 5 5 5
## 3 ZHANG Y 0.8000000 5 0 5 4 5
## 4 SALCEDO-SANZ S 0.6000000 5 0 5 3 5
## 5 WANG Y 0.5000000 6 0 6 3 8
## 6 WANG B 0.5000000 4 0 4 2 1
## 7 HUANG H 0.2500000 4 0 4 1 1
## 8 LI J 0.2500000 4 0 4 1 1
## 9 LU S 0.2500000 4 0 4 1 1
## 10 ZHANG J 0.1666667 6 0 6 1 8
## Rank by DF
## 1 1
## 2 1
## 3 3
## 4 4
## 5 5
## 6 5
## 7 7
## 8 7
## 9 7
## 10 10
# h-index 10 authors
authors=gsub(","," ",names(results$Authors)[1:10])
indices <- Hindex(M, field = "author", elements=authors, sep = ";", years = 50)
indices$H
## Author h_index g_index m_index TC NP PY_start
## 1 NA NA 1 1 0.09090909 1 16 2010
## 2 DEO RC 4 7 1.33333333 124 7 2018
## 3 JOSHUVA A 3 6 0.60000000 68 6 2016
## 4 SCARTEZZINI JL 3 6 0.75000000 91 6 2017
## 5 WANG Y 2 4 0.50000000 19 6 2017
## 6 ZHANG J 2 5 0.33333333 31 6 2015
## 7 ASSOULINE D 3 5 0.75000000 91 5 2017
## 8 MOHAJERI N 3 5 0.75000000 91 5 2017
## 9 SALCEDO-SANZ S 4 5 0.57142857 116 5 2014
## 10 ZHANG Y 2 5 0.40000000 87 5 2016
# Author' h-index
indices <- Hindex(M, field = "author", elements="ZHANG Y", sep = ";", years = 50) # need to change authors name
# ZHANG Y's impact indices:
indices$H
## Author h_index g_index m_index TC NP PY_start
## 1 ZHANG Y 2 5 0.4 87 5 2016
# ZHANG Y's citations
indices$CitationList
## [[1]]
## Authors Journal Year TotalCitation
## 3 ZHANG Y;WEI Y;GUO D;SONG M LECTURE NOTES IN COMPUTER SCIE 2019 0
## 4 ZHANG Y;TANG H;WANG K;PAN Y;LI KONGZHI LILUN YU YINGYONG/CONT 2019 0
## 5 DU M;LI Y;WANG B;ZHANG Y;LUO P ZHONGGUO DIANJI GONGCHENG XUEB 2019 1
## 2 ZHANG Y;YANG R;ZHANG K;JIANG H IEEE INTELLIGENT SYSTEMS 2017 10
## 1 ZHANG Y;LIU K;QIN L;AN X ENERGY CONVERSION AND MANAGEME 2016 76
# Lotkas Law coefficient estimation
L <- lotka(results)
# Author Productivity. Empirical Distribution
L$AuthorProd
## N.Articles N.Authors Freq
## 1 1 1368 0.8758002561
## 2 2 152 0.0973111396
## 3 3 23 0.0147247119
## 4 4 9 0.0057618438
## 5 5 4 0.0025608195
## 6 6 4 0.0025608195
## 7 7 1 0.0006402049
## 8 16 1 0.0006402049
lokta_table <- matrix(c(L$Beta, L$C, L$R2, L$p.value), ncol = 1, byrow = TRUE)
colnames(lokta_table) <- "Estimation"
rownames(lokta_table) <- c("Beta: ", "Constant: ", "Goodness of fit: ", "P-value: ")
lokta_table <- as.table(lokta_table)
print(lokta_table)
## Estimation
## Beta: 2.8507849
## Constant: 0.4565744
## Goodness of fit: 0.9079044
## P-value: 0.2699997
# Observed distribution
Observed=L$AuthorProd[,3]
# Theoretical distribution with Beta = 2
Theoretical=10^(log10(L$C)-2*log10(L$AuthorProd[,1]))
plot(L$AuthorProd[,1],Theoretical,type="l",col="red",ylim=c(0, 1), xlab="Articles",ylab="Freq. of Authors",main="Scientific Productivity")
lines(L$AuthorProd[,1],Observed,col="blue")
legend(x="topright",c("Theoretical (B=2)","Observed"),col=c("red","blue"),lty = c(1,1,1),cex=0.6,bty="n")
# Bibliographic coupling
NetMatrix <- biblioNetwork(M, analysis = "coupling", network = "authors", sep = ";")
# plot authors' similarity (first 20 authors), using salton similarity index
net <- networkPlot(NetMatrix, normalize = "salton", weighted=NULL, n = 100, Title = "Authors' Coupling", type = "fruchterman", size=5,size.cex=T,remove.multiple=TRUE,labelsize=0.8,label.n=10,label.cex=F)
# Bibliographic co-citation
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ". ")
net <- networkPlot(NetMatrix, n = 20, type = "kamada", Title = "co-citation", labelsize = 1.0)
# Bibliographic collaboration
# authors' collaboration network:
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "authors", sep = ";")
net <- networkPlot(NetMatrix, n = 20, type = "kamada", Title = "Author collaboration", labelsize = 1.0)
# Create a county collaboration network
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "countries", sep = ";")
# Plot the network
net <- networkPlot(NetMatrix, n = dim(NetMatrix)[1], Title = "Country Collaboration", type = 'circle', size = TRUE, remove.multiple = FALSE, labelsize = 0.8)
# Keyword co-occurrences
# Create keyword co-occurrencies network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
# Plot the network
net <- networkPlot(NetMatrix, normalize="association", weighted=T, n = 30, Title = "Keyword Co-occurrences", type = "fruchterman", size=T,edgesize = 5,labelsize=0.7)
# Conceptual Structure using keywords
CS <- conceptualStructure(M,field="DE_TM", minDegree = 5, k.max = 5, stemming = FALSE, labelsize = 9)
CS <- conceptualStructure(M,field="ID", method="CA", minDegree=4, clust=5, stemming=FALSE, labelsize=10, documents=10)
# Create a historical citation network
# histResults <- histNetwork(M, n = 20, sep = ". ") # works with wos data only
# Plot a historical co-citation network
# net <- histPlot(histResults, size = FALSE, label = TRUE, arrowsize = 0.5) # works with wos data only
# AuthorProdOverTime, fig.height=6, fig.width=8
topAU <- authorProdOverTime(M, k = 10, graph = TRUE)
# Table: Author's productivity per year
# AuthorProdOverTime, fig.height=6, fig.width=8
head(topAU$dfAU)
## Author year freq TC TCpY
## 1 ASSOULINE D 2017 2 62 15.500000
## 2 ASSOULINE D 2018 2 29 9.666667
## 3 ASSOULINE D 2019 1 0 0.000000
## 4 DEO RC 2018 3 119 39.666667
## 5 DEO RC 2019 2 5 2.500000
## 6 DEO RC 2020 2 0 0.000000
# Table: Auhtor's documents list
#head(topAU$dfPapersAU)
A <- cocMatrix(M, Field = "SO", sep = ";")
# Most relevant sources
sort(Matrix::colSums(A), decreasing = TRUE)[1:5]
## ENERGIES
## 19
## APPLIED ENERGY
## 12
## LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
## 10
## RENEWABLE AND SUSTAINABLE ENERGY REVIEWS
## 9
## APPLIED SCIENCES (SWITZERLAND)
## 8
# A <- cocMatrix(M, Field = "CR", sep = ". ")
# A <- cocMatrix(M, Field = "AU", sep = ";")
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
# A <- cocMatrix(M, Field = "AU_CO", sep = ";")
# A <- cocMatrix(M, Field = "DE", sep = ";")
# A <- cocMatrix(M, Field = "ID", sep = ";")
# NetMatrix <- biblioNetwork(M, analysis = "coupling", network = "references", sep = ". ")
# similarity, fig.height=9, fig.width=9, warning=FALSE
NetMatrix <- biblioNetwork(M, analysis = "coupling", network = "authors", sep = ";")
net=networkPlot(NetMatrix, normalize = "salton", weighted=NULL, n = 100, Title = "Authors' Coupling", type = "fruchterman", size=5,size.cex=T,remove.multiple=TRUE,labelsize=0.8,label.n=10,label.cex=F)
# NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ". ")
# NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "authors", sep = ";")
# NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "countries", sep = ";")
# An example of a classical keyword co-occurrences network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
netstat <- networkStat(NetMatrix)
names(netstat$network)
## [1] "networkSize" "networkDensity" "networkTransitivity" "networkDiameter"
## [5] "networkDegreeDist" "networkCentrDegree" "networkCentrCloseness" "networkCentrEigen"
## [9] "networkCentrbetweenness" "NetworkAverPathLeng"
names(netstat$vertex)
## NULL
summary(netstat, k=10)
##
##
## Main statistics about the network
##
## Size 3197
## Density 0.013
## Transitivity 0.142
## Diameter 3
## Degree Centralization 0.696
## Average path length 2.123
##
# Country collaboration, fig.height=7, fig.width=7, warning=FALSE
# Create a country collaboration network
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "countries", sep = ";")
# Plot the network
net=networkPlot(NetMatrix, n = dim(NetMatrix)[1], Title = "Country Collaboration", type = "circle", size=TRUE, remove.multiple=FALSE,labelsize=0.7,cluster="none")
# Co-citation network, fig.height=7, fig.width=7, warning=FALSE
# Create a co-citation network
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ";")
# Plot the network
net=networkPlot(NetMatrix, n = 30, Title = "Co-Citation Network", type = "fruchterman", size=T, remove.multiple=FALSE, labelsize=0.7,edgesize = 5)
## ----Keyword c-occurrences, fig.height=7, fig.width=7, warning=FALSE--------------------------------------------------
# Create keyword co-occurrences network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
# Plot the network
net=networkPlot(NetMatrix, normalize="association", weighted=T, n = 30, Title = "Keyword Co-occurrences", type = "fruchterman", size=T,edgesize = 5,labelsize=0.7)
# Historical Co-citation network, fig.height=7, fig.width=10, warning=FALSE
# Create a historical citation network
# options(width=130)
# histResults <- histNetwork(M, min.citations = 10, sep = ";")
# Plot a historical co-citation network
# net <- histPlot(histResults, n=15, size = 10, labelsize=5)