Polynomial Regression
######
library(MASS)
## Warning: package 'MASS' was built under R version 3.6.2
data(Boston)
dim(Boston)
## [1] 506 14
mod5<-lm(medv~poly(lstat,5), data=Boston)
summary(mod5)
##
## Call:
## lm(formula = medv ~ poly(lstat, 5), data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.5433 -3.1039 -0.7052 2.0844 27.1153
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.5328 0.2318 97.197 < 2e-16 ***
## poly(lstat, 5)1 -152.4595 5.2148 -29.236 < 2e-16 ***
## poly(lstat, 5)2 64.2272 5.2148 12.316 < 2e-16 ***
## poly(lstat, 5)3 -27.0511 5.2148 -5.187 3.10e-07 ***
## poly(lstat, 5)4 25.4517 5.2148 4.881 1.42e-06 ***
## poly(lstat, 5)5 -19.2524 5.2148 -3.692 0.000247 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.215 on 500 degrees of freedom
## Multiple R-squared: 0.6817, Adjusted R-squared: 0.6785
## F-statistic: 214.2 on 5 and 500 DF, p-value: < 2.2e-16
Polynomial Cross Validation
######
library(MASS)
data(Boston)
dim(Boston)
## [1] 506 14
# SIZE OF SPLIT
ceiling(506*.3)
## [1] 152
#152
# CREATE PARTITION INDICATOR FOR TEST (1) and TRAIN (0)
Boston$part<-rep(0, 506)
set.seed(1)
test<-sample(1:506, 152, replace=FALSE)
Boston$part[test]<-1
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.2
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.5 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.4 ✓ stringr 1.4.0
## ✓ readr 2.0.2 ✓ forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'tibble' was built under R version 3.6.2
## Warning: package 'tidyr' was built under R version 3.6.2
## Warning: package 'readr' was built under R version 3.6.2
## Warning: package 'purrr' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## Warning: package 'forcats' was built under R version 3.6.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::select() masks MASS::select()
ggplot(Boston, aes(x=lstat, y=medv, color=as.factor(part)))+
geom_point()

ggplot(Boston, aes(x=lstat, y=medv, color=as.factor(part)))+
geom_point()+
facet_grid(.~part)

# TRAIN DATAFRAME
traindf<-Boston%>%
filter(part==0)
testdf<-Boston%>%
filter(part==1)
# TRAIN MODEL
trainLM<-lm(medv~lstat, traindf)
anova(trainLM)
## Analysis of Variance Table
##
## Response: medv
## Df Sum Sq Mean Sq F value Pr(>F)
## lstat 1 16434 16433.6 424.12 < 2.2e-16 ***
## Residuals 352 13639 38.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# TEST MSE
testFit<-predict(trainLM, testdf)
testRSS<-sum((testdf$medv-testFit)^2)
testRSS
## [1] 5848.702
testMSE<-mean((testdf$medv-testFit)^2)
testMSE
## [1] 38.4783
# TEST DIFFERENT POLY DEGREES
train<-sample(506, 354)
degreePoly<-10
polyMSE<-matrix(nrow=degreePoly, ncol=2)
colnames(polyMSE)<-c("degree", "MSE")
for(i in 1:degreePoly){
polyMSE[i,1]<-i
this.fit<-lm(medv~poly(lstat,i), data=Boston, subset=train)
polyMSE[i,2]<-mean((Boston$medv-predict(this.fit, Boston))[-train]^2)
}
polyDF<-as.data.frame(polyMSE)
head(polyDF)
## degree MSE
## 1 1 49.75812
## 2 2 37.93550
## 3 3 38.24952
## 4 4 36.80820
## 5 5 36.21784
## 6 6 36.11516
ggplot(data=polyDF, aes(x=degree, y=MSE))+
geom_point()+
geom_line()

# MULTIPLE RANDOM SPLITS
degreePoly<-10
splits<-5
splitMat<-matrix(nrow=degreePoly*splits, ncol=3)
colnames(splitMat)<-c("run","MSE", "degree")
for(i in 1:splits){
a=(i-1)*degreePoly+1
b=i*degreePoly
set.seed(i*10)
splitMat[a:b,1]<-i
train<-sample(506, 354)
for(j in 1:degreePoly){
c=a+(j-1)
this.fit<-lm(medv~poly(lstat,j), data=Boston, subset=train)
splitMat[c,2]<-mean((Boston$medv-predict(this.fit, Boston))[-train]^2)
splitMat[c,3]<-j
}
}
splitDF<-as.data.frame(splitMat)
head(splitDF)
## run MSE degree
## 1 1 38.56181 1
## 2 1 29.22841 2
## 3 1 26.82882 3
## 4 1 27.18187 4
## 5 1 27.54487 5
## 6 1 28.41189 6
ggplot(data=splitDF, aes(x=degree, y=MSE, color=as.factor(run)))+
geom_point()+
geom_line()
