Generalized Linear Mixed-Effects for 2-level Fractional Factorial Design

1 Generalized Linear Mixed-Effects Models: lme4

  • Reed Johnson et al. (2013)
  • Franzén, Dinnétz, and Hammer (2016)
  • Grilli and Rampichini (2015)
  • Bates et al. (2015)
  • ML is better for unbalanced data, but it produces biased results.
  • REML is unbiased, but it cannot be used when comparing two nested models with a likelihood ratio test.

1.1 Specifying the random effects in multilevel models: beyond standard assumptions

Examplesof mixed-effects model formulas: sourced from @Bates2015

Examplesof mixed-effects model formulas: sourced from Bates et al. (2015)

Profiles for Full Factorial and Fractional Factorial Designs: sourced from @Ueniversitesi2015

Profiles for Full Factorial and Fractional Factorial Designs: sourced from Üniversitesi et al. (2015)

1.2 transform five attributes as factor levels

'data.frame':   116 obs. of  7 variables:
 $ ID          : Factor w/ 29 levels "4","14","23",..: 2 2 2 2 3 3 3 3 5 5 ...
 $ CHOICE      : Factor w/ 2 levels "0","1": 1 2 2 1 2 2 2 2 1 2 ...
 $ SUBSIDIES   : Factor w/ 2 levels "0","1": 2 2 1 1 2 2 1 1 2 2 ...
 $ TIMEFRAME   : Factor w/ 2 levels "0","1": 2 1 2 1 2 1 2 1 2 1 ...
 $ SUPPORT     : Factor w/ 2 levels "0","1": 1 2 2 2 1 2 2 2 1 2 ...
 $ COMPENSATION: Factor w/ 2 levels "0","1": 1 2 1 1 1 2 1 1 1 2 ...
 $ CEILING     : Factor w/ 2 levels "0","1": 1 2 2 1 1 2 2 1 1 2 ...

1.3 Fractional Fractorial Design for Mixed Effect Model

  • total number of sampling size = 116
  • number of replications per each ID = 4
  • number of unique ID case = 116/4 = 29

1.4 Seting up a model: Generalized linear mixed model

Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: CHOICE ~ SUBSIDIES + TIMEFRAME + SUPPORT + COMPENSATION + CEILING +  
    (1 | ID)
   Data: ChoiceExperimentDF

     AIC      BIC   logLik deviance df.resid 
   137.1    156.3    -61.5    123.1      109 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.9987 -0.6302  0.2026  0.5866  2.0604 

Random effects:
 Groups Name        Variance Std.Dev.
 ID     (Intercept) 0.5822   0.763   
Number of obs: 116, groups:  ID, 29

Fixed effects:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -2.15464    0.66119  -3.259 0.001119 ** 
SUBSIDIES1     1.19939    0.49915   2.403 0.016268 *  
TIMEFRAME1     0.04066    0.47564   0.085 0.931882    
SUPPORT1       0.15320    0.49831   0.307 0.758516    
COMPENSATION1  2.10216    0.54718   3.842 0.000122 ***
CEILING1       1.33760    0.49703   2.691 0.007120 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) SUBSID TIMEFR SUPPOR COMPEN
SUBSIDIES1  -0.552                            
TIMEFRAME1  -0.384 -0.041                     
SUPPORT1    -0.385  0.224 -0.066              
COMPENSATIO -0.510  0.183  0.088  0.021       
CEILING1    -0.453  0.181 -0.037 -0.102  0.208
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: CHOICE
               Chisq Df Pr(>Chisq)    
SUBSIDIES     5.7737  1  0.0162680 *  
TIMEFRAME     0.0073  1  0.9318825    
SUPPORT       0.0945  1  0.7585163    
COMPENSATION 14.7593  1  0.0001221 ***
CEILING       7.2425  1  0.0071196 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: CHOICE ~ SUBSIDIES + COMPENSATION + CEILING + (1 | ID)
   Data: ChoiceExperimentDF

     AIC      BIC   logLik deviance df.resid 
   133.2    146.9    -61.6    123.2      111 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8797 -0.6125  0.2096  0.6088  2.1136 

Random effects:
 Groups Name        Variance Std.Dev.
 ID     (Intercept) 0.5677   0.7534  
Number of obs: 116, groups:  ID, 29

Fixed effects:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)    -2.0504     0.5488  -3.736 0.000187 ***
SUBSIDIES1      1.1688     0.4860   2.405 0.016178 *  
COMPENSATION1   2.0967     0.5469   3.834 0.000126 ***
CEILING1        1.3569     0.4936   2.749 0.005981 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) SUBSID COMPEN
SUBSIDIES1  -0.598              
COMPENSATIO -0.571  0.184       
CEILING1    -0.620  0.214  0.223
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: CHOICE
               Chisq Df Pr(>Chisq)    
SUBSIDIES     5.7834  1  0.0161784 *  
COMPENSATION 14.6970  1  0.0001262 ***
CEILING       7.5559  1  0.0059814 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6 Effects Plots

par(mar = c(5, 4, 2, 2))
a <- summary(e1)
plotCI(1:2, a$effect, ui = a$upper, li = a$lower, xaxt = "n", xlim = c(1, 10), ylim = c(0, 
    1), xlab = "", ylab = "Willing to create a wetland", las = 1, cex.lab = 0.7, 
    cex.axis = 0.5, bty = "n", gap = 0.02, col = "red")
axis(1, 1:2, c("Current", "Higher"), cex.axis = 0.5)
text(1.5, 0.5, "*")
mtext("Subsidy", 1, line = 2, at = 1.5, cex = 0.7)

b <- summary(e2)
par(new = TRUE)
plotCI(3:4, b$effect, ui = b$upper, li = b$lower, xaxt = "n", yaxt = "n", xlim = c(1, 
    10), ylim = c(0, 1), xlab = "", ylab = "", las = 1, cex.axis = 0.7, bty = "n", 
    gap = 0.02, col = "blue")
axis(1, 3:4, c("Current", "Longer"), cex.axis = 0.5)
text(3.5, 0.5, "ns", cex = 0.7)
mtext("Time frame", 1, line = 2, at = 3.5, cex = 0.7)

c <- summary(e3)
par(new = TRUE)
plotCI(5:6, c$effect, ui = c$upper, li = c$lower, xaxt = "n", yaxt = "n", xlim = c(1, 
    10), ylim = c(0, 1), xlab = "", ylab = "", las = 1, cex.axis = 0.7, bty = "n", 
    gap = 0.02, col = "blue")
axis(1, 5:6, c("No", "Yes"), cex.axis = 0.5)
text(5.5, 0.5, "ns", cex = 0.7)
mtext("Support", 1, line = 2, at = 5.5, cex = 0.7)

d <- summary(e4)
par(new = TRUE)
plotCI(7:8, d$effect, ui = d$upper, li = d$lower, xaxt = "n", yaxt = "n", xlim = c(1, 
    10), ylim = c(0, 1), xlab = "", ylab = "", las = 1, cex.axis = 0.7, bty = "n", 
    gap = 0.02, col = "red")
axis(1, 7:8, c("Current", "Higher"), cex.axis = 0.5)
text(7.5, 0.5, "***")
mtext("Compensation", 1, line = 2, at = 7.5, cex = 0.7)

e <- summary(e5)
par(new = TRUE)
plotCI(9:10, e$effect, ui = e$upper, li = e$lower, xaxt = "n", yaxt = "n", xlim = c(1, 
    10), ylim = c(0, 1), xlab = "", ylab = "", las = 1, cex.axis = 0.7, bty = "n", 
    gap = 0.02, col = "red")
axis(1, 9:10, c("Current", "Higher"), cex.axis = 0.5)
text(9.5, 0.5, "**")
mtext("Ceiling", 1, line = 2, at = 9.5, cex = 0.7)

grid()

Data: ChoiceExperimentDF
Models:
Model.02: CHOICE ~ SUBSIDIES + COMPENSATION + CEILING + (1 | ID)
Model.01: CHOICE ~ SUBSIDIES + TIMEFRAME + SUPPORT + COMPENSATION + CEILING + 
Model.01:     (1 | ID)
         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
Model.02  5 133.17 146.94 -61.585   123.17                         
Model.01  7 137.06 156.34 -61.532   123.06 0.1068      2      0.948

1.7 Results:

  • Model_02 is better than Model_01

Reference

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software; Vol 1, Issue 1 (2015). https://www.jstatsoft.org/v067/i01.

Franzén, Frida, Patrik Dinnétz, and Monica Hammer. 2016. “Factors Affecting Farmers’ Willingness to Participate in Eutrophication Mitigation – a Case Study of Preferences for Wetland Creation in Sweden.” Ecological Economics 130 (October): 8–15. http://www.sciencedirect.com/science/article/pii/S0921800916305961.

Grilli, Leonardo, and Carla Rampichini. 2015. “Specification of Random Effects in Multilevel Models: A Review.” Quality & Quantity 49 (3): 967–76. https://doi.org/10.1007/s11135-014-0060-5.

Reed Johnson, F., Emily Lancsar, Deborah Marshall, Vikram Kilambi, Axel Mühlbacher, Dean A. Regier, Brian W. Bresnahan, Barbara Kanninen, and John F. P. Bridges. 2013. “Constructing Experimental Designs for Discrete-Choice Experiments: Report of the Ispor Conjoint Analysis Experimental Design Good Research Practices Task Force.” Value in Health 16 (1): 3–13. http://www.sciencedirect.com/science/article/pii/S1098301512041629.

Üniversitesi, Trakya, İktisadi İdari, Bilimler Fakültesi, Nihat Taş, Nil Kodaz Engizek, Emrah Önder, and Güler Önder. 2015. “HEALTH Education Planning in Marketing Perspective Using Conjoint Analysis*.” Trakya Üniversitesi İktisadi Ve İdari Bilimler Fakültesi E-Dergi 4 (January): 40–66.

DK C.

2020-03-01