#This is a data Analysis on Data set Regarding salary for male and Female "Equal pay for Equal work"

sal=read.csv("~/Book1.csv")

View(sal)

dim(sal)
## [1] 50 12
summary(sal)
##        ID            Salary       Compa.ratio        Midpoint    
##  Min.   : 1.00   Min.   :21.80   Min.   :0.8760   Min.   :23.00  
##  1st Qu.:13.25   1st Qu.:24.32   1st Qu.:0.9985   1st Qu.:23.00  
##  Median :25.50   Median :42.20   Median :1.0540   Median :40.00  
##  Mean   :25.50   Mean   :44.45   Mean   :1.0503   Mean   :41.76  
##  3rd Qu.:37.75   3rd Qu.:61.73   3rd Qu.:1.1033   3rd Qu.:57.00  
##  Max.   :50.00   Max.   :79.10   Max.   :1.1840   Max.   :67.00  
##       Age        Performance.Rating    Service          Gender   
##  Min.   :22.00   Min.   : 55.0      Min.   : 1.00   Min.   :0.0  
##  1st Qu.:30.00   1st Qu.: 80.0      1st Qu.: 4.25   1st Qu.:0.0  
##  Median :35.00   Median : 90.0      Median : 8.00   Median :0.5  
##  Mean   :35.72   Mean   : 85.9      Mean   : 8.96   Mean   :0.5  
##  3rd Qu.:42.00   3rd Qu.: 95.0      3rd Qu.:12.00   3rd Qu.:1.0  
##  Max.   :52.00   Max.   :100.0      Max.   :22.00   Max.   :1.0  
##      Raise           Degree    Gender1 Grade 
##  Min.   :3.000   Min.   :0.0   F:25    A:15  
##  1st Qu.:4.300   1st Qu.:0.0   M:25    B: 7  
##  Median :4.900   Median :0.5           C: 5  
##  Mean   :4.938   Mean   :0.5           D: 5  
##  3rd Qu.:5.600   3rd Qu.:1.0           E:12  
##  Max.   :6.600   Max.   :1.0           F: 6
sal1=sal[,-c(11,12)]

sum(is.na(sal1))
## [1] 0
#variance

var(sal1$Salary)
## [1] 365.6005
#standard deviation

sd(sal1$Salary)
## [1] 19.12068
#avg salary
mean(sal1$Salary)
## [1] 44.454
library(LaplacesDemon)
## Warning: package 'LaplacesDemon' was built under R version 3.6.2
Mode(sal$Salary)
## [1] 26.00804
max(sal1$Salary)
## [1] 79.1
#normal Distribution

windows()
qqnorm(sal1$Salary)

attach(sal1)


#Female Employee's Details

f=sal1[sal1$Gender==1,]

f
##    ID Salary Compa.ratio Midpoint Age Performance.Rating Service Gender Raise
## 3   3   36.2       1.168       31  30                 75       5      1   3.6
## 7   7   42.1       1.052       40  32                100       8      1   5.7
## 8   8   22.8       0.992       23  32                 90       9      1   5.8
## 10 10   23.0       0.998       23  30                 80       7      1   4.7
## 11 11   21.8       0.949       23  41                100      19      1   4.8
## 13 13   40.5       1.012       40  30                100       2      1   4.7
## 14 14   23.6       1.028       23  32                 90      12      1   6.0
## 15 15   23.4       1.016       23  32                 80       8      1   4.9
## 17 17   67.5       1.184       57  27                 55       3      1   3.0
## 18 18   34.1       1.101       31  31                 80      11      1   5.6
## 20 20   35.2       1.135       31  44                 70      16      1   4.8
## 22 22   51.1       1.065       48  48                 65       6      1   3.8
## 23 23   25.3       1.101       23  36                 65       6      1   3.3
## 24 24   51.0       1.063       48  30                 75       9      1   3.8
## 26 26   24.4       1.060       23  22                 95       2      1   6.2
## 28 28   77.2       1.152       67  44                 95       9      1   4.4
## 31 31   22.7       0.985       23  29                 60       4      1   3.9
## 35 35   23.9       1.038       23  23                 90       4      1   5.3
## 36 36   22.8       0.993       23  27                 75       3      1   4.3
## 37 37   22.6       0.984       23  22                 95       2      1   6.2
## 39 39   33.5       1.081       31  27                 90       6      1   5.5
## 42 42   24.1       1.049       23  32                100       8      1   5.7
## 43 43   74.5       1.112       67  42                 95      20      1   5.5
## 45 45   48.9       1.018       48  36                 95       8      1   5.2
## 48 48   65.6       1.150       57  34                 90      11      1   5.3
##    Degree
## 3       1
## 7       1
## 8       1
## 10      1
## 11      1
## 13      0
## 14      1
## 15      1
## 17      1
## 18      0
## 20      0
## 22      1
## 23      0
## 24      0
## 26      0
## 28      0
## 31      1
## 35      0
## 36      0
## 37      0
## 39      0
## 42      1
## 43      0
## 45      1
## 48      1
#dimensions of a data set
dim(f)
## [1] 25 10
#summary(f)=>mean, median, mode,1Q, 3Q
summary(f)
##        ID           Salary       Compa.ratio       Midpoint          Age       
##  Min.   : 3.0   Min.   :21.80   Min.   :0.949   Min.   :23.00   Min.   :22.00  
##  1st Qu.:14.0   1st Qu.:23.40   1st Qu.:1.012   1st Qu.:23.00   1st Qu.:29.00  
##  Median :23.0   Median :33.50   Median :1.052   Median :31.00   Median :32.00  
##  Mean   :24.6   Mean   :37.51   Mean   :1.059   Mean   :34.88   Mean   :32.52  
##  3rd Qu.:36.0   3rd Qu.:48.90   3rd Qu.:1.101   3rd Qu.:48.00   3rd Qu.:36.00  
##  Max.   :48.0   Max.   :77.20   Max.   :1.184   Max.   :67.00   Max.   :48.00  
##  Performance.Rating    Service          Gender      Raise          Degree    
##  Min.   : 55.0      Min.   : 2.00   Min.   :1   Min.   :3.00   Min.   :0.00  
##  1st Qu.: 75.0      1st Qu.: 4.00   1st Qu.:1   1st Qu.:4.30   1st Qu.:0.00  
##  Median : 90.0      Median : 8.00   Median :1   Median :4.90   Median :1.00  
##  Mean   : 84.2      Mean   : 7.92   Mean   :1   Mean   :4.88   Mean   :0.52  
##  3rd Qu.: 95.0      3rd Qu.: 9.00   3rd Qu.:1   3rd Qu.:5.60   3rd Qu.:1.00  
##  Max.   :100.0      Max.   :20.00   Max.   :1   Max.   :6.20   Max.   :1.00
max(f$Salary)
## [1] 77.2
mean(f$Salary)
## [1] 37.512
range(f$Salary)
## [1] 21.8 77.2
var(f$Salary)
## [1] 316.8136
sd(f$Salary)
## [1] 17.79926
#male Employee's Details

m=sal1[sal1$Gender==0,]

m
##    ID Salary Compa.ratio Midpoint Age Performance.Rating Service Gender Raise
## 1   1   57.7       1.012       57  34                 85       8      0   5.7
## 2   2   27.9       0.899       31  52                 80       7      0   3.9
## 4   4   63.7       1.117       57  42                100      16      0   5.5
## 5   5   45.5       0.947       48  36                 90      16      0   5.7
## 6   6   74.4       1.110       67  36                 70      12      0   4.5
## 9   9   77.7       1.159       67  49                100      10      0   4.0
## 12 12   55.5       0.973       57  52                 95      22      0   4.5
## 16 16   42.3       1.058       40  44                 90       4      0   5.7
## 19 19   24.3       1.056       23  32                 85       1      0   4.6
## 21 21   79.1       1.181       67  43                 95      13      0   6.3
## 25 25   23.0       1.000       23  41                 70       4      0   4.0
## 27 27   42.9       1.073       40  35                 80       7      0   3.9
## 29 29   77.5       1.157       67  52                 95       5      0   5.4
## 30 30   46.2       0.963       48  45                 90      18      0   4.3
## 32 32   27.2       0.876       31  25                 95       4      0   5.6
## 33 33   62.9       1.104       57  35                 90       9      0   5.5
## 34 34   28.1       0.905       31  26                 80       2      0   4.9
## 38 38   60.0       1.052       57  45                 95      11      0   4.5
## 40 40   23.0       1.002       23  24                 90       2      0   6.3
## 41 41   42.1       1.052       40  25                 80       5      0   4.3
## 44 44   63.8       1.120       57  45                 90      16      0   5.2
## 46 46   61.8       1.085       57  39                 75      20      0   3.9
## 47 47   61.5       1.079       57  37                 95       5      0   5.5
## 49 49   54.9       0.963       57  41                 95      21      0   6.6
## 50 50   61.9       1.086       57  38                 80      12      0   4.6
##    Degree
## 1       0
## 2       0
## 4       1
## 5       1
## 6       1
## 9       1
## 12      0
## 16      0
## 19      1
## 21      1
## 25      0
## 27      1
## 29      0
## 30      0
## 32      0
## 33      1
## 34      1
## 38      0
## 40      0
## 41      0
## 44      1
## 46      1
## 47      1
## 49      0
## 50      0
dim(m)
## [1] 25 10
#summary(m)=>mean, median, mode,1Q, 3Q
summary(m)
##        ID           Salary      Compa.ratio       Midpoint          Age       
##  Min.   : 1.0   Min.   :23.0   Min.   :0.876   Min.   :23.00   Min.   :24.00  
##  1st Qu.:12.0   1st Qu.:42.1   1st Qu.:0.973   1st Qu.:40.00   1st Qu.:35.00  
##  Median :29.0   Median :55.5   Median :1.056   Median :57.00   Median :39.00  
##  Mean   :26.4   Mean   :51.4   Mean   :1.041   Mean   :48.64   Mean   :38.92  
##  3rd Qu.:40.0   3rd Qu.:62.9   3rd Qu.:1.104   3rd Qu.:57.00   3rd Qu.:45.00  
##  Max.   :50.0   Max.   :79.1   Max.   :1.181   Max.   :67.00   Max.   :52.00  
##  Performance.Rating    Service       Gender      Raise           Degree    
##  Min.   : 70.0      Min.   : 1   Min.   :0   Min.   :3.900   Min.   :0.00  
##  1st Qu.: 80.0      1st Qu.: 5   1st Qu.:0   1st Qu.:4.300   1st Qu.:0.00  
##  Median : 90.0      Median : 9   Median :0   Median :4.900   Median :0.00  
##  Mean   : 87.6      Mean   :10   Mean   :0   Mean   :4.996   Mean   :0.48  
##  3rd Qu.: 95.0      3rd Qu.:16   3rd Qu.:0   3rd Qu.:5.600   3rd Qu.:1.00  
##  Max.   :100.0      Max.   :22   Max.   :0   Max.   :6.600   Max.   :1.00
mean(m$Salary)
## [1] 51.396
range(m$Salary)
## [1] 23.0 79.1
var(m$Salary)
## [1] 329.2221
sd(m$Salary)
## [1] 18.14448
max(m$Salary)
## [1] 79.1
#(avg(m)-avg(f))/avg(m)

sal_gap= (mean(m$Salary)-mean(f$Salary))/mean(m$Salary)

sal_gap
## [1] 0.2701378