Choose independently two numbers B and C at random from the interval [0, 1] with uniform density. Prove that B and C are proper probability distributions.Note that the point (B,C) is then chosen at random in the unit square.Find the probability that
Uniform Probability Distribution
n <- 1000
# Default min - 0 and max - 1
B = runif(n, min = 0, max = 1)
C = runif(n, min = 0, max = 1)
plot(1:n, B)
plot(1:n, C)
hist(B)
hist(C)
Solution using custom function
s <- function(B, C) {
val <- 0
cn <- 0
total_len <- length(B)
for(i in 1:length(B)) {
val <- B[i] + C[i]
if (val < .5) {
cn = cn + 1
}
}
p <- cn / total_len
return(p)
}
s(B, C)
## [1] 0.114
Solution using built-in function
D <- B+C
sum(punif(D<1/2, min=0, max = 1))/n
## [1] 0.114
Solution using custom function
s <- function(B, C) {
val <- 0
cn <- 0
total_len <- length(B)
for(i in 1:length(B)) {
val <- B[i] * C[i]
if (val < .5) {
cn = cn + 1
}
}
p <- cn / total_len
return(p)
}
s(B, C)
## [1] 0.858
Solution using built-in function
E <- B*C
sum(punif(E<1/2, min=0, max = 1))/n
## [1] 0.858
Solution using custom function
s <- function(B, C) {
val <- 0
cn <- 0
total_len <- length(B)
for(i in 1:length(B)) {
val <- B[i] - C[i]
if (abs(val) < .5) {
cn = cn + 1
}
}
p <- cn / total_len
return(p)
}
s(B, C)
## [1] 0.749
Solution using built-in function
G <- abs(B-C)
sum(punif(G<1/2, min=0, max = 1))/n
## [1] 0.749
Solution using custom function
s <- function(B, C) {
val <- 0
cn <- 0
total_len <- length(B)
for(i in 1:length(B)) {
val <- pmax(B[i],C[i])
if (val < .5) {
cn = cn + 1
}
}
p <- cn / total_len
return(p)
}
s(B, C)
## [1] 0.221
Solution using built-in function
H <- pmax(B,C)
sum(punif(H<1/2, min=0, max = 1))/n
## [1] 0.221
Solution using custom function
s <- function(B, C) {
val <- 0
cn <- 0
total_len <- length(B)
for(i in 1:length(B)) {
val <- pmin(B[i],C[i])
if (val < .5) {
cn = cn + 1
}
}
p <- cn / total_len
return(p)
}
s(B, C)
## [1] 0.757
Solution using built-in function
H <- pmin(B,C)
sum(punif(H<1/2, min=0, max = 1))/n
## [1] 0.757