The UC Irvine Machine Learning Repository6 contains a data set related to glass identification. The data consist of 214 glass samples labeled as one of seven class categories. There are nine predictors, including the refractive index and percentages of eight elements: Na, Mg, Al, Si, K, Ca, Ba, and Fe.
Using visualizations, explore the predictor variables to understand their distributions as well as the relationships between predictors.
Do there appear to be any outliers in the data? Are any predictors skewed?
Are there any relevant transformations of one or more predictors that might improve the classification model?
## 'data.frame': 214 obs. of 10 variables:
## $ RI : num 1.52 1.52 1.52 1.52 1.52 ...
## $ Na : num 13.6 13.9 13.5 13.2 13.3 ...
## $ Mg : num 4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
## $ Al : num 1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
## $ Si : num 71.8 72.7 73 72.6 73.1 ...
## $ K : num 0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
## $ Ca : num 8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
## $ Ba : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Fe : num 0 0 0 0 0 0.26 0 0 0 0.11 ...
## $ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...
## [1] 1.602715
## [1] 0.4478343
## [1] -1.136452
## [1] 0.8946104
## [1] -0.7202392
## [1] 6.460089
## [1] 2.018446
## [1] 3.36868
## [1] 1.729811
## RI Na Mg Al Si K Ca Ba Fe Type
## 1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0 0.00 1
## 2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00 1
## 3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0.00 1
## 4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0.00 1
## 5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0.00 1
## 6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1
## RI Na Mg Al Si K
## 1 0.8708258 0.2842867 1.2517037 -0.6908222 -1.12444556 -0.67013422
## 2 -0.2487502 0.5904328 0.6346799 -0.1700615 0.10207972 -0.02615193
## 3 -0.7196308 0.1495824 0.6000157 0.1904651 0.43776033 -0.16414813
## 4 -0.2322859 -0.2422846 0.6970756 -0.3102663 -0.05284979 0.11184428
## 5 -0.3113148 -0.1688095 0.6485456 -0.4104126 0.55395746 0.08117845
## 6 -0.7920739 -0.7566101 0.6416128 0.3506992 0.41193874 0.21917466
## Ca Ba Fe
## 1 -0.1454254 -0.3520514 -0.5850791
## 2 -0.7918771 -0.3520514 -0.5850791
## 3 -0.8270103 -0.3520514 -0.5850791
## 4 -0.5178378 -0.3520514 -0.5850791
## 5 -0.6232375 -0.3520514 -0.5850791
## 6 -0.6232375 -0.3520514 2.0832652
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.1225 0.5550 0.4971 0.6100 6.2100
##
## Lambda could not be estimated; no transformation is applied
#Glass_transf_Ca <- BoxCoxTrans(Glass_transf$Ca)
#Glass_transf_Ba <- BoxCoxTrans(Glass_transf$Ba)
Glass_transf$K <- (Glass_transf$K)^(1/3)
Glass_transf$Ca <- (Glass_transf$Ca)^(1/3)
Glass_transf$Ba <- (Glass_transf$Ba)^(1/3)
skewness(Glass$K)
## [1] 6.460089
## [1] -0.5836242
## [1] 2.018446
## [1] 1.38769
## [1] 3.36868
## [1] 2.044037
The soybean data can also be found at the UC Irvine Machine Learning Repository. Data were collected to predict disease in 683 soybeans. The 35 predictors are mostly categorical and include information on the environmental conditions (e.g., temperature, precipitation) and plant conditions (e.g., left spots, mold growth). The outcome labels consist of 19 distinct classes.
Investigate the frequency distributions for the categorical predictors. Are any of the distributions degenerate in the ways discussed earlier in this chapter?
Roughly 18% of the data are missing. Are there particular predictors that are more likely to be missing? Is the pattern of missing data related to the classes?
Develop a strategy for handling missing data, either by eliminating predictors or imputation.
## 'data.frame': 683 obs. of 36 variables:
## $ Class : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
## $ date : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
## $ plant.stand : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
## $ precip : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ temp : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
## $ hail : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## $ crop.hist : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
## $ area.dam : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
## $ sever : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
## $ seed.tmt : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
## $ germ : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
## $ plant.growth : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaves : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.halo : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.marg : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.size : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.shread : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.malf : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.mild : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ stem : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ lodging : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
## $ stem.cankers : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
## $ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
## $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ ext.decay : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
## $ mycelium : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ sclerotia : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.spots : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
## $ seed : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ mold.growth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.size : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ shriveling : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ roots : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $date
##
##
## Var1 Freq
## ----- -----
## 0 26
## 1 75
## 2 93
## 3 118
## 4 131
## 5 149
## 6 90
##
## $plant.stand
##
##
## Var1 Freq
## ----- -----
## 0 354
## 1 293
##
## $precip
##
##
## Var1 Freq
## ----- -----
## 0 74
## 1 112
## 2 459
##
## $temp
##
##
## Var1 Freq
## ----- -----
## 0 80
## 1 374
## 2 199
##
## $hail
##
##
## Var1 Freq
## ----- -----
## 0 435
## 1 127
##
## $crop.hist
##
##
## Var1 Freq
## ----- -----
## 0 65
## 1 165
## 2 219
## 3 218
##
## $area.dam
##
##
## Var1 Freq
## ----- -----
## 0 123
## 1 227
## 2 145
## 3 187
##
## $sever
##
##
## Var1 Freq
## ----- -----
## 0 195
## 1 322
## 2 45
##
## $seed.tmt
##
##
## Var1 Freq
## ----- -----
## 0 305
## 1 222
## 2 35
##
## $germ
##
##
## Var1 Freq
## ----- -----
## 0 165
## 1 213
## 2 193
##
## $plant.growth
##
##
## Var1 Freq
## ----- -----
## 0 441
## 1 226
##
## $leaves
##
##
## Var1 Freq
## ----- -----
## 0 77
## 1 606
##
## $leaf.halo
##
##
## Var1 Freq
## ----- -----
## 0 221
## 1 36
## 2 342
##
## $leaf.marg
##
##
## Var1 Freq
## ----- -----
## 0 357
## 1 21
## 2 221
##
## $leaf.size
##
##
## Var1 Freq
## ----- -----
## 0 51
## 1 327
## 2 221
##
## $leaf.shread
##
##
## Var1 Freq
## ----- -----
## 0 487
## 1 96
##
## $leaf.malf
##
##
## Var1 Freq
## ----- -----
## 0 554
## 1 45
##
## $leaf.mild
##
##
## Var1 Freq
## ----- -----
## 0 535
## 1 20
## 2 20
##
## $stem
##
##
## Var1 Freq
## ----- -----
## 0 296
## 1 371
##
## $lodging
##
##
## Var1 Freq
## ----- -----
## 0 520
## 1 42
##
## $stem.cankers
##
##
## Var1 Freq
## ----- -----
## 0 379
## 1 39
## 2 36
## 3 191
##
## $canker.lesion
##
##
## Var1 Freq
## ----- -----
## 0 320
## 1 83
## 2 177
## 3 65
##
## $fruiting.bodies
##
##
## Var1 Freq
## ----- -----
## 0 473
## 1 104
##
## $ext.decay
##
##
## Var1 Freq
## ----- -----
## 0 497
## 1 135
## 2 13
##
## $mycelium
##
##
## Var1 Freq
## ----- -----
## 0 639
## 1 6
##
## $int.discolor
##
##
## Var1 Freq
## ----- -----
## 0 581
## 1 44
## 2 20
##
## $sclerotia
##
##
## Var1 Freq
## ----- -----
## 0 625
## 1 20
##
## $fruit.pods
##
##
## Var1 Freq
## ----- -----
## 0 407
## 1 130
## 2 14
## 3 48
##
## $fruit.spots
##
##
## Var1 Freq
## ----- -----
## 0 345
## 1 75
## 2 57
## 4 100
##
## $seed
##
##
## Var1 Freq
## ----- -----
## 0 476
## 1 115
##
## $mold.growth
##
##
## Var1 Freq
## ----- -----
## 0 524
## 1 67
##
## $seed.discolor
##
##
## Var1 Freq
## ----- -----
## 0 513
## 1 64
##
## $seed.size
##
##
## Var1 Freq
## ----- -----
## 0 532
## 1 59
##
## $shriveling
##
##
## Var1 Freq
## ----- -----
## 0 539
## 1 38
##
## $roots
##
##
## Var1 Freq
## ----- -----
## 0 551
## 1 86
## 2 15
#b)
# Percentage of Missing Values in the dataset
1-(sum(complete.cases(Soybean))/nrow(Soybean)) # ~ 18%
## [1] 0.1771596
# Missing values by Predictor
missval <- apply(is.na(Soybean), 2, which)
missvaldf <- data.frame(lapply(missval, length))
kable(missvaldf)
Class | date | plant.stand | precip | temp | hail | crop.hist | area.dam | sever | seed.tmt | germ | plant.growth | leaves | leaf.halo | leaf.marg | leaf.size | leaf.shread | leaf.malf | leaf.mild | stem | lodging | stem.cankers | canker.lesion | fruiting.bodies | ext.decay | mycelium | int.discolor | sclerotia | fruit.pods | fruit.spots | seed | mold.growth | seed.discolor | seed.size | shriveling | roots |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 36 | 38 | 30 | 121 | 16 | 1 | 121 | 121 | 112 | 16 | 0 | 84 | 84 | 84 | 100 | 84 | 108 | 16 | 121 | 38 | 38 | 106 | 38 | 38 | 38 | 38 | 84 | 106 | 92 | 92 | 106 | 92 | 106 | 31 |
# Missing values by class
missval_class <- Soybean[!complete.cases(Soybean),]
missval_class %>% count(Class) %>% kable()
Class | n |
---|---|
2-4-d-injury | 16 |
cyst-nematode | 14 |
diaporthe-pod-&-stem-blight | 15 |
herbicide-injury | 8 |
phytophthora-rot | 68 |
Class | n |
---|---|
2-4-d-injury | 16 |
alternarialeaf-spot | 91 |
anthracnose | 44 |
bacterial-blight | 20 |
bacterial-pustule | 20 |
brown-spot | 92 |
brown-stem-rot | 44 |
charcoal-rot | 20 |
cyst-nematode | 14 |
diaporthe-pod-&-stem-blight | 15 |
diaporthe-stem-canker | 20 |
downy-mildew | 20 |
frog-eye-leaf-spot | 91 |
herbicide-injury | 8 |
phyllosticta-leaf-spot | 20 |
phytophthora-rot | 88 |
powdery-mildew | 20 |
purple-seed-stain | 20 |
rhizoctonia-root-rot | 20 |
## [1] 121
## [1] 562
missval_lwr_20 <- Soybean[apply(Soybean[,-1], 1, function(x) sum(is.na(x))) < 20,]
missval_imputable <- missval_lwr_20[!apply(missval_lwr_20, 2, function(x) is.na(median(as.numeric(x)))),]
## Warning in median(as.numeric(x)): NAs introduced by coercion
## [1] 33
Class | date | plant.stand | precip | temp | hail | crop.hist | area.dam | sever | seed.tmt | germ | plant.growth | leaves | leaf.halo | leaf.marg | leaf.size | leaf.shread | leaf.malf | leaf.mild | stem | lodging | stem.cankers | canker.lesion | fruiting.bodies | ext.decay | mycelium | int.discolor | sclerotia | fruit.pods | fruit.spots | seed | mold.growth | seed.discolor | seed.size | shriveling | roots | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41 | phytophthora-rot | 2 | 1 | 2 | 1 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
48 | phytophthora-rot | 2 | 1 | 1 | 2 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
58 | phytophthora-rot | 2 | 1 | 2 | 2 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
59 | phytophthora-rot | 3 | 1 | 1 | 2 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
61 | phytophthora-rot | 2 | 1 | 2 | 2 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
62 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 0 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
64 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
292 | diaporthe-pod-&-stem-blight | 6 | 0 | 2 | 2 | NA | 2 | 3 | NA | NA | 1 | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
293 | diaporthe-pod-&-stem-blight | 5 | 0 | 2 | 2 | NA | 3 | 3 | NA | NA | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
295 | diaporthe-pod-&-stem-blight | 5 | NA | 2 | 2 | NA | 2 | 3 | NA | NA | NA | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
296 | diaporthe-pod-&-stem-blight | 5 | 0 | 2 | 2 | NA | 2 | 3 | NA | NA | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
342 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
343 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
347 | phytophthora-rot | 4 | 1 | 1 | 2 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
348 | phytophthora-rot | 1 | 1 | 2 | 2 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 1 | 2 | NA | 2 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
355 | phytophthora-rot | 2 | 1 | 1 | 2 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 1 | 2 | NA | 2 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
357 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
358 | phytophthora-rot | 1 | 1 | 2 | 2 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 2 | NA | 2 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
360 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
361 | phytophthora-rot | 4 | 1 | 1 | 1 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
362 | phytophthora-rot | 1 | 1 | 2 | 2 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 2 | NA | 2 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
363 | phytophthora-rot | 2 | 1 | 2 | 2 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
373 | phytophthora-rot | 2 | 1 | 2 | 2 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 2 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
375 | phytophthora-rot | 4 | 1 | 1 | 1 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
376 | phytophthora-rot | 1 | 1 | 2 | 1 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 2 | 2 | NA | 2 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
378 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
379 | phytophthora-rot | 4 | 1 | 1 | 1 | NA | 1 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
383 | phytophthora-rot | 2 | 1 | 1 | 1 | NA | 3 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
384 | phytophthora-rot | 3 | 1 | 1 | 1 | NA | 2 | 1 | NA | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | NA | 1 | NA | 3 | 2 | NA | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
648 | diaporthe-pod-&-stem-blight | 6 | NA | 2 | 2 | NA | 2 | 3 | NA | NA | NA | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
649 | diaporthe-pod-&-stem-blight | 6 | NA | 2 | 2 | NA | 1 | 3 | NA | NA | NA | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
650 | diaporthe-pod-&-stem-blight | 5 | NA | 2 | 2 | NA | 1 | 3 | NA | NA | NA | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |
651 | diaporthe-pod-&-stem-blight | 6 | NA | 2 | 2 | NA | 3 | 3 | NA | NA | NA | 0 | 0 | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | NA |