Measles in Baltimore from 1920-1953

I wrote some code to compress the weekly data into bi-weeks (26 bi-weeks per year). The climate data is average max and min temperatures per bi-week.


## this is the code I used to compress the weekly data into biweeks

BAL <- read.csv("C:/Users/Lisa/Desktop/677/Baltimore.csv", header = T, stringsAsFactors = FALSE)

## split into an array by year
BAL.yr <- split(BAL, f = BAL$YEAR)

## find number of weeks in each year
WPY <- rep(NA, 34)

for (i in 1:34) {
    WPY[i] <- length(BAL.yr[[i]]$WEEK)
}

## since some years have 53 weeks instead of 52, I removed all the week
## 53s we have so much data I don't think this will affect our results
## much the number of weeks per year must be even to use biweeks!

BAL.1 <- BAL[BAL$WEEK != 53, ]

BIWEEK <- rep(rep(1:26, each = 2), 34)
BIWEEK.p <- (BIWEEK/26) - (1/26)

BAL.1 <- data.frame(BAL.1, BIWEEK, BIWEEK.p)

YR.BI <- BAL.1$YEAR + BAL.1$BIWEEK.p

BAL.1 <- data.frame(BAL.1, YR.BI)

BAL.1$CASES <- as.numeric(BAL.1$CASES)
## Warning: NAs introduced by coercion

CASES.BI <- rep(NA, length(BAL.1$WEEK))

for (i in seq(1, length(BAL.1$WEEK), by = 2)) {
    CASES.BI[i] <- BAL.1$CASES[i] + BAL.1$CASES[i + 1]
    CASES.BI[i + 1] <- CASES.BI[i]
}

TMAXAV.BI <- rep(NA, length(BAL.1$WEEK))
TMINAV.BI <- rep(NA, length(BAL.1$WEEK))

for (i in seq(1, length(BAL.1$WEEK), by = 2)) {
    TMAXAV.BI[i] <- (BAL.1$TMAXAV[i] + BAL.1$TMAXAV[i + 1])/2
    TMAXAV.BI[i + 1] <- TMAXAV.BI[i]
}

for (i in seq(1, length(BAL.1$WEEK), by = 2)) {
    TMINAV.BI[i] <- (BAL.1$TMINAV[i] + BAL.1$TMINAV[i + 1])/2
    TMINAV.BI[i + 1] <- TMINAV.BI[i]
}

for (i in seq(1, length(BAL.1$WEEK), by = 2)) {
    CASES.BI[i] <- BAL.1$CASES[i] + BAL.1$CASES[i + 1]
    CASES.BI[i + 1] <- CASES.BI[i]
}

BAL.1 <- data.frame(BAL.1, CASES.BI, TMAXAV.BI, TMINAV.BI)

plot(BAL.1$YR.BI, BAL.1$CASES.BI, type = "l")

plot of chunk unnamed-chunk-1


BAL.BWK <- BAL.1[, c(1, 22:27)]

names(BAL.BWK) <- c("YEAR", "BIWEEK", "BIWEEK.p", "YR.BWK", "CASES", "TMAXAV", 
    "TMINAV")

## remove duplicate rows ##
BAL.BWK <- BAL.BWK[seq(1, length(BAL.BWK$YEAR), by = 2), ]

## this is what the final dataset looks like ##
head(BAL.BWK, 52)
##     YEAR BIWEEK BIWEEK.p YR.BWK CASES  TMAXAV   TMINAV
## 1   1920      1  0.00000   1920   181  24.214 -46.1429
## 3   1920      2  0.03846   1920   274   4.429 -61.7857
## 5   1920      3  0.07692   1920   270  47.929 -32.1429
## 7   1920      4  0.11538   1920   323  46.786 -26.5714
## 9   1920      5  0.15385   1920   308  46.786 -48.8571
## 11  1920      6  0.19231   1920   372 133.357  23.0000
## 13  1920      7  0.23077   1920   380 172.143  71.8571
## 15  1920      8  0.26923   1920   528 155.143  52.7857
## 17  1920      9  0.30769   1920   560 183.714  90.4286
## 19  1920     10  0.34615   1920   560 195.214 101.0714
## 21  1920     11  0.38462   1920   503 244.000 146.3571
## 23  1920     12  0.42308   1920   306 275.000 170.1429
## 25  1920     13  0.46154   1920   158 275.929 177.7143
## 27  1920     14  0.50000   1920   100 294.857 205.5714
## 29  1920     15  0.53846   1921    42 283.357 190.0714
## 31  1920     16  0.57692   1921    18 288.500 194.4286
## 33  1920     17  0.61538   1921    16 272.143 205.1429
## 35  1920     18  0.65385   1921    16 259.071 175.3571
## 37  1920     19  0.69231   1921    15 250.714 155.8571
## 39  1920     20  0.73077   1921     6 237.214 144.8571
## 41  1920     21  0.76923   1921    12 250.500 135.2143
## 43  1920     22  0.80769   1921    19 208.357 108.7143
## 45  1920     23  0.84615   1921    15 112.929  44.0714
## 47  1920     24  0.88462   1921    26 104.429  52.0714
## 49  1920     25  0.92308   1921    38  97.000  35.2857
## 51  1920     26  0.96154   1921    29  46.857 -17.9286
## 53  1921      1  0.00000   1921    NA  91.357  15.1429
## 55  1921      2  0.03846   1921    56  48.000 -31.7143
## 57  1921      3  0.07692   1921    74  70.357   4.0000
## 59  1921      4  0.11538   1921   145  83.357  -0.4286
## 61  1921      5  0.15385   1921    98 133.071  41.6429
## 63  1921      6  0.19231   1921   103 175.500  71.3571
## 65  1921      7  0.23077   1921   105 200.000  73.0714
## 67  1921      8  0.26923   1921   131 184.857  79.0000
## 69  1921      9  0.30769   1921   187 196.143 118.6429
## 71  1921     10  0.34615   1921   233 211.143 118.5714
## 73  1921     11  0.38462   1921   236 253.643 147.5714
## 75  1921     12  0.42308   1921   165 270.214 166.0000
## 77  1921     13  0.46154   1921    85 314.357 206.0714
## 79  1921     14  0.50000   1922    48 306.286 231.2857
## 81  1921     15  0.53846   1922    18 309.571 215.9286
## 83  1921     16  0.57692   1922    20 288.071 199.5714
## 85  1921     17  0.61538   1922     9 277.286 189.7857
## 87  1921     18  0.65385   1922    15 292.857 204.5000
## 89  1921     19  0.69231   1922     4 273.429 194.9286
## 91  1921     20  0.73077   1922     6 241.500 152.9286
## 93  1921     21  0.76923   1922    16 208.000  89.3571
## 95  1921     22  0.80769   1922    13 176.071  87.7143
## 97  1921     23  0.84615   1922    46 107.929  35.2143
## 99  1921     24  0.88462   1922   107 138.071  61.5000
## 101 1921     25  0.92308   1922   140  78.214  17.8571
## 103 1921     26  0.96154   1922   116  57.857 -24.2143

## plots of cases temps by decade ##

plot(BAL.BWK$YR.BWK, BAL.BWK$CASES, type = "l", lwd = 2, xlim = c(1920, 1930))
lines(BAL.BWK$YR.BWK, BAL.BWK$TMAXAV * 10, col = "skyblue")
lines(BAL.BWK$YR.BWK, BAL.BWK$TMINAV * 10, col = "orange")

plot of chunk unnamed-chunk-1


plot(BAL.BWK$YR.BWK, BAL.BWK$CASES, type = "l", lwd = 2, xlim = c(1930, 1940))
lines(BAL.BWK$YR.BWK, BAL.BWK$TMAXAV * 10, col = "skyblue")
lines(BAL.BWK$YR.BWK, BAL.BWK$TMINAV * 10, col = "orange")

plot of chunk unnamed-chunk-1


plot(BAL.BWK$YR.BWK, BAL.BWK$CASES, type = "l", lwd = 2, xlim = c(1940, 1950))
lines(BAL.BWK$YR.BWK, BAL.BWK$TMAXAV * 10, col = "skyblue")
lines(BAL.BWK$YR.BWK, BAL.BWK$TMINAV * 10, col = "orange")

plot of chunk unnamed-chunk-1


plot(BAL.BWK$YR.BWK, BAL.BWK$CASES, type = "l", lwd = 2, xlim = c(1950, 1960))
lines(BAL.BWK$YR.BWK, BAL.BWK$TMAXAV * 10, col = "skyblue")
lines(BAL.BWK$YR.BWK, BAL.BWK$TMINAV * 10, col = "orange")

plot of chunk unnamed-chunk-1



## plot cases by year ##
BAL.BWKs <- split(BAL.BWK, f = BAL.BWK$YEAR)
for (i in 1:29) {
    plot(BAL.BWKs[[i]]$BIWEEK, BAL.BWKs[[i]]$CASES, type = "l", lwd = 2, xlab = BAL.BWKs[[i]]$YEAR[1], 
        ylab = "Cases")
}

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1

for (i in 33:34) {
    plot(BAL.BWKs[[i]]$BIWEEK, BAL.BWKs[[i]]$CASES, type = "l", lwd = 2, xlab = BAL.BWKs[[i]]$YEAR[1], 
        ylab = "Cases")
}

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1