Set Factor Variables

Dan2 <- read_csv("Dan2.csv")
## Parsed with column specification:
## cols(
##   Element = col_character(),
##   Predicted = col_double(),
##   Actual = col_double(),
##   logpred = col_double(),
##   logactual = col_double(),
##   Group = col_character()
## )
Dan2$Group = as.factor(Dan2$Group)
Dan2$Element = as.factor(Dan2$Element)
Dan2
## # A tibble: 75 x 6
##      Element Predicted    Actual    logpred   logactual  Group
##       <fctr>     <dbl>     <dbl>      <dbl>       <dbl> <fctr>
##  1      HAW4  3.040000 2.8200000  0.4828736  0.45016374    THC
##  2      HAW5  2.340000 2.3600000  0.3692159  0.37363175    THC
##  3 HEMWat 23  1.350000 4.0649500  0.1314832  0.60905521    THC
##  4 HEMWat 24  0.490000 2.4669550 -0.3060911  0.39216123    THC
##  5 HEMWat 25  0.520000 1.6843229 -0.2817922  0.22642536    THC
##  6      HEW9  0.940000 1.2101977 -0.0271998  0.08285634    THC
##  7     HEW10  0.630000 0.9697192 -0.1980524 -0.01335401    THC
##  8     HEW11  0.470000 0.7408328 -0.3255874 -0.13027982    THC
##  9      HAW4  2.130211 1.4300000  0.3284226  0.15552806    CBD
## 10      HAW5  1.622111 1.2200000  0.2100807  0.08593629    CBD
## # ... with 65 more rows

Plots by Group

Plots without Group

R2

summary(lm(Actual~Predicted, data = Dan2[Dan2$Group == "THC",]))
## 
## Call:
## lm(formula = Actual ~ Predicted, data = Dan2[Dan2$Group == "THC", 
##     ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8633 -0.6812 -0.2988  0.2512  1.9515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   1.3322     0.6140   2.170   0.0731 .
## Predicted     0.5787     0.4032   1.435   0.2012  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.035 on 6 degrees of freedom
## Multiple R-squared:  0.2556, Adjusted R-squared:  0.1315 
## F-statistic:  2.06 on 1 and 6 DF,  p-value: 0.2012
summary(lm(Actual~Predicted, data = Dan2[Dan2$Group == "CBD",]))
## 
## Call:
## lm(formula = Actual ~ Predicted, data = Dan2[Dan2$Group == "CBD", 
##     ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5399 -0.2872 -0.1509  0.2814  0.5998 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.02992    0.25822   0.116  0.91102   
## Predicted    0.91071    0.19138   4.759  0.00206 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.423 on 7 degrees of freedom
## Multiple R-squared:  0.7639, Adjusted R-squared:  0.7301 
## F-statistic: 22.65 on 1 and 7 DF,  p-value: 0.002062
summary(lm(Actual~Predicted, data = Dan2[Dan2$Group == "CBDA",]))
## 
## Call:
## lm(formula = Actual ~ Predicted, data = Dan2[Dan2$Group == "CBDA", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.19208 -0.14333 -0.01197  0.08183  0.30802 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.1294     0.1021   1.267   0.2455   
## Predicted     0.3539     0.0776   4.561   0.0026 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1733 on 7 degrees of freedom
## Multiple R-squared:  0.7482, Adjusted R-squared:  0.7122 
## F-statistic:  20.8 on 1 and 7 DF,  p-value: 0.002602
summary(lm(Actual~Predicted, data = Dan2[Dan2$Group == "all",]))
## 
## Call:
## lm(formula = Actual ~ Predicted, data = Dan2[Dan2$Group == "all", 
##     ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2209 -0.4409 -0.1681  0.4572  1.5806 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.6263     0.2138   2.929  0.00734 **
## Predicted     0.4414     0.1401   3.150  0.00433 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6981 on 24 degrees of freedom
## Multiple R-squared:  0.2925, Adjusted R-squared:  0.263 
## F-statistic: 9.924 on 1 and 24 DF,  p-value: 0.004332
summary(lm(Actual~Predicted, data = Dan2[Dan2$Group == "all minus thc hemwat",]))
## 
## Call:
## lm(formula = Actual ~ Predicted, data = Dan2[Dan2$Group == "all minus thc hemwat", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.69218 -0.40566 -0.05699  0.24658  1.36185 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.3528     0.1716   2.056   0.0524 .  
## Predicted     0.8647     0.1389   6.226 3.55e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5115 on 21 degrees of freedom
## Multiple R-squared:  0.6486, Adjusted R-squared:  0.6319 
## F-statistic: 38.76 on 1 and 21 DF,  p-value: 3.554e-06

Plots by Group (log)

Plots without Groups (log)

R2 (log)

summary(lm(logactual~logpred, data = Dan2[Dan2$Group == "THC",]))
## 
## Call:
## lm(formula = logactual ~ logpred, data = Dan2[Dan2$Group == "THC", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.23405 -0.16609 -0.04797  0.14622  0.28874 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.25802    0.07778   3.317   0.0161 *
## logpred      0.47376    0.26187   1.809   0.1204  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2195 on 6 degrees of freedom
## Multiple R-squared:  0.353,  Adjusted R-squared:  0.2451 
## F-statistic: 3.273 on 1 and 6 DF,  p-value: 0.1204
summary(lm(logactual~logpred, data = Dan2[Dan2$Group == "CBD",]))
## 
## Call:
## lm(formula = logactual ~ logpred, data = Dan2[Dan2$Group == "CBD", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.22170 -0.19463 -0.05139  0.14718  0.32087 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -0.04816    0.07017  -0.686  0.51464   
## logpred      0.88291    0.24075   3.667  0.00799 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2084 on 7 degrees of freedom
## Multiple R-squared:  0.6577, Adjusted R-squared:  0.6088 
## F-statistic: 13.45 on 1 and 7 DF,  p-value: 0.007993
summary(lm(logactual~logpred, data = Dan2[Dan2$Group == "CBDA",]))
## 
## Call:
## lm(formula = logactual ~ logpred, data = Dan2[Dan2$Group == "CBDA", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.27840 -0.21708  0.01327  0.10900  0.37433 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -0.33215    0.07802  -4.257  0.00376 **
## logpred      0.71637    0.26303   2.724  0.02961 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2288 on 7 degrees of freedom
## Multiple R-squared:  0.5145, Adjusted R-squared:  0.4451 
## F-statistic: 7.418 on 1 and 7 DF,  p-value: 0.02961
summary(lm(logactual~logpred, data = Dan2[Dan2$Group == "all",]))
## 
## Call:
## lm(formula = logactual ~ logpred, data = Dan2[Dan2$Group == "all", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.47352 -0.19419  0.01573  0.20669  0.41102 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -0.005258   0.050025  -0.105  0.91716   
## logpred      0.440347   0.128715   3.421  0.00224 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2492 on 24 degrees of freedom
## Multiple R-squared:  0.3278, Adjusted R-squared:  0.2998 
## F-statistic:  11.7 on 1 and 24 DF,  p-value: 0.002238
summary(lm(logactual~logpred, data = Dan2[Dan2$Group == "all minus thc hemwat",]))
## 
## Call:
## lm(formula = logactual ~ logpred, data = Dan2[Dan2$Group == "all minus thc hemwat", 
##     ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.39810 -0.16355  0.07652  0.14216  0.33136 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.06303    0.04881   1.291    0.211    
## logpred      0.61418    0.12786   4.803 9.55e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2159 on 21 degrees of freedom
## Multiple R-squared:  0.5235, Adjusted R-squared:  0.5008 
## F-statistic: 23.07 on 1 and 21 DF,  p-value: 9.547e-05