# Radhe Radhe
library(randomForest);library(dplyr);library(caTools)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:randomForest':
##
## combine
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Importing the dataset and converting the dataset attribute class into o and 1
dataset = read.csv('diab_1.csv',stringsAsFactors=FALSE)
df <- dataset$class
df[df == "tested_positive"] <-"1"
df[df == "tested_negative"] <-"0"
dataset$class <- df
dataset$class = as.numeric(as.character(dataset$class))
# Splitting the dataset into the Training set and Test set
#install.packages('caTools')
set.seed(789) #for fixing the referance
split = sample.split(dataset$class, SplitRatio = 0.76)
tran_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
#Fitting the random forest
rf_pima <- randomForest(class ~., data = tran_set, mtry = 8, ntree=171, importance = TRUE)
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
# Testing the Model
#install.packages("caret")
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
rf_probs <- predict(rf_pima, newdata = test_set)
rf_pred <- ifelse(rf_probs > 0.5, 1, 0)
confusionMatrix(as.factor(rf_pred), as.factor(test_set$class))
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 99 23
## 1 21 41
##
## Accuracy : 0.7609
## 95% CI : (0.6926, 0.8206)
## No Information Rate : 0.6522
## P-Value [Acc > NIR] : 0.0009686
##
## Kappa : 0.469
##
## Mcnemar's Test P-Value : 0.8801685
##
## Sensitivity : 0.8250
## Specificity : 0.6406
## Pos Pred Value : 0.8115
## Neg Pred Value : 0.6613
## Prevalence : 0.6522
## Detection Rate : 0.5380
## Detection Prevalence : 0.6630
## Balanced Accuracy : 0.7328
##
## 'Positive' Class : 0
##
ACC_RandomForest <- confusionMatrix(as.factor(rf_pred), as.factor(test_set$class))$overall['Accuracy']
# Random forest graphs
par(mfrow = c(1, 2))
varImpPlot(rf_pima, type = 2, main = "Variable Importance",col = 'black')
plot(rf_pima, main = "Error vs no. of trees grown")
