Connect with me on Open Science Framework | Contact me via LinkedIn
R analysis script for the pretest on scent selection and perception This script describes all details of the pretest. Some steps are outsourced (e.g., data labeling) to seperate scripts.
Here ist the r seassion info:
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
## [3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C
## [5] LC_TIME=German_Germany.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_3.6.2 magrittr_1.5 tools_3.6.2 htmltools_0.4.0
## [5] yaml_2.2.0 Rcpp_1.0.1 stringi_1.4.3 rmarkdown_2.1
## [9] knitr_1.28 stringr_1.4.0 xfun_0.12 digest_0.6.23
## [13] rlang_0.4.2 evaluate_0.14
Tip: include “code_folding:”show"" in header instead of “toc_float: true” & “toc_collapsed: true” and “knitr::opts_chunk$set(echo = TRUE)” to show r code
Notice: This part of the report only analyzes warm vs. cool scents.
A brief overview over the imported data
| ScentNumber | Age | Gender | CountryNames | MDMQ1to12_r1 |
|---|---|---|---|---|
| 4 | 23 | 1 | 3 | 2 |
| 4 | 25 | 1 | 3 | 4 |
| 4 | 25 | 2 | 13 | 5 |
| 4 | 28 | 1 | 10 | 3 |
| 4 | 22 | 2 | 15 | 4 |
| 4 | 22 | 2 | 9 | 5 |
This is done in a seperate script (see 01_Data preparation.R)
Scent notice
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| ScentNotice = no (%) | 13 (22.0) | 21 (32.3) | 0.280 |
ScentSensitivity, Illness affecting sense of smell, smoking, recognition of ambient scent, effort spent on study
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| ScentSensitivity (%) | NaN | |||
| Increased | 11 (22.9) | 12 ( 24.5) | ||
| Normal | 28 (58.3) | 31 ( 63.3) | ||
| Decreased | 9 (18.8) | 6 ( 12.2) | ||
| Impaired | 0 ( 0.0) | 0 ( 0.0) | ||
| Illness = No (%) | 43 (89.6) | 49 (100.0) | 0.063 | |
| Smoking = no (%) | 41 (69.5) | 54 ( 83.1) | 0.116 | |
| ScentNotice = no (%) | 13 (22.0) | 21 ( 32.3) | 0.280 | |
| Effort = LowEffort (%) | 1 ( 2.1) | 1 ( 2.0) | 1.000 |
## [1] "Sample Size"
## [1] 124
## [1] "Gender"
##
## Male Female Diverse
## 56.45 42.74 0.81
## [1] "Federal State"
##
## BW BY BE BB HB HH HE MV NI NW RP SL SN
## 1.61 5.65 6.45 3.23 0.81 0.81 3.23 2.42 21.77 5.65 2.42 0.81 7.26
## ST SH TH other
## 29.84 4.84 2.42 0.81
## [1] "Scent Sensitivity"
##
## Increased Normal Decreased Impaired
## 23.71 60.82 15.46 0.00
## [1] "Smokers"
##
## yes no
## 23.39 76.61
## [1] "Job Status"
##
## StudyPupilApprenticeship Employee SelfEmployedFreelance
## 94.35 5.65 0.00
## HousewifeHouseman JobSearch Pensioner
## 0.00 0.00 0.00
## NotSpecified
## 0.00
## [1] "Age"
## vars n mean sd min max range se Q0.25 Q0.5 Q0.75
## 1 1 124 24.08 3.53 18 39 21 0.32 22 23.5 25
## [1] "Illness affecting sense of smell"
##
## Yes No
## 5.15 94.85
## [1] "montly net income"
## vars n mean sd min max range se Q0.25 Q0.5 Q0.75
## 1 1 97 798.97 396.63 0 2500 2500 40.27 600 750 1000
Age and monthly income
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| Age (mean (SD)) | 23.97 (3.41) | 24.19 (3.65) | 0.731 | |
| NetIncomeMonthly (mean (SD)) | 813.67 (357.68) | 784.57 (434.67) | 0.720 |
The Kruskal-Wallis-Test p-value for age is: 0.5556827 and that for Income is: 0.8649986 .
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.12 | 1 | 122 | 12.54 | .731 | .001 |
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.13 | 1 | 95 | 158,756.98 | .720 | .001 |
Post hocs:
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -0.22 0.637 122 -0.345 0.7306
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 29.1 80.9 95 0.360 0.7200
Gender, Federal state, ScentSensitivity, Job status, Illness affecting sense of smell
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| Gender (%) | 0.536 | |||
| Male | 32 (54.2) | 38 ( 58.5) | ||
| Female | 27 (45.8) | 26 ( 40.0) | ||
| Diverse | 0 ( 0.0) | 1 ( 1.5) | ||
| CountryNames (%) | 0.921 | |||
| BW | 1 ( 1.7) | 1 ( 1.5) | ||
| BY | 4 ( 6.8) | 3 ( 4.6) | ||
| BE | 2 ( 3.4) | 6 ( 9.2) | ||
| BB | 2 ( 3.4) | 2 ( 3.1) | ||
| HB | 0 ( 0.0) | 1 ( 1.5) | ||
| HH | 1 ( 1.7) | 0 ( 0.0) | ||
| HE | 2 ( 3.4) | 2 ( 3.1) | ||
| MV | 2 ( 3.4) | 1 ( 1.5) | ||
| NI | 15 (25.4) | 12 ( 18.5) | ||
| NW | 4 ( 6.8) | 3 ( 4.6) | ||
| RP | 2 ( 3.4) | 1 ( 1.5) | ||
| SL | 0 ( 0.0) | 1 ( 1.5) | ||
| SN | 4 ( 6.8) | 5 ( 7.7) | ||
| ST | 16 (27.1) | 21 ( 32.3) | ||
| SH | 2 ( 3.4) | 4 ( 6.2) | ||
| TH | 1 ( 1.7) | 2 ( 3.1) | ||
| other | 1 ( 1.7) | 0 ( 0.0) | ||
| ScentSensitivity (%) | NaN | |||
| Increased | 11 (22.9) | 12 ( 24.5) | ||
| Normal | 28 (58.3) | 31 ( 63.3) | ||
| Decreased | 9 (18.8) | 6 ( 12.2) | ||
| Impaired | 0 ( 0.0) | 0 ( 0.0) | ||
| JobStatus (%) | NaN | |||
| StudyPupilApprenticeship | 57 (96.6) | 60 ( 92.3) | ||
| Employee | 2 ( 3.4) | 5 ( 7.7) | ||
| SelfEmployedFreelance | 0 ( 0.0) | 0 ( 0.0) | ||
| HousewifeHouseman | 0 ( 0.0) | 0 ( 0.0) | ||
| JobSearch | 0 ( 0.0) | 0 ( 0.0) | ||
| Pensioner | 0 ( 0.0) | 0 ( 0.0) | ||
| NotSpecified | 0 ( 0.0) | 0 ( 0.0) | ||
| Illness = No (%) | 43 (89.6) | 49 (100.0) | 0.063 | |
| Smoking = no (%) | 41 (69.5) | 54 ( 83.1) | 0.116 | |
| Effort = LowEffort (%) | 1 ( 2.1) | 1 ( 2.0) | 1.000 |
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676. https://doi.org/10.1038/nature03701
Lichters, M., Brunnlieb, C., Nave, G., Sarstedt, M., & Vogt, B. (2016). The Influence of Serotonin Deficiency on Choice Deferral and the Compromise Effect. Journal of Marketing Research, 53(2), 183–198. https://doi.org/10.1509/jmr.14.0482
Assessment of internal consistency reliability and convergent validity.
For reliability analyses and item statistics, we use the alpha() function from the psych package. Next to Cronbach’s alpha itself, the following helpful information is returned:
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = MDMQ_p)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.91 0.56 10 0.012 4 0.7 0.54
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.91 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## MDMQ_satisfied 0.90 0.90 0.90 0.56 8.9 0.014 0.0045
## MDMQ_bad 0.90 0.90 0.90 0.57 9.4 0.014 0.0051
## MDMQ_good 0.89 0.90 0.89 0.55 8.7 0.014 0.0041
## MDMQ_uncomfortable 0.90 0.90 0.90 0.56 9.1 0.014 0.0057
## MDMQ_comfortable 0.89 0.89 0.89 0.55 8.5 0.015 0.0046
## MDMQ_unhappy 0.89 0.90 0.89 0.56 8.7 0.014 0.0060
## MDMQ_unsatisfied 0.90 0.90 0.90 0.57 9.3 0.013 0.0049
## MDMQ_happy 0.89 0.89 0.89 0.55 8.4 0.015 0.0033
## med.r
## MDMQ_satisfied 0.54
## MDMQ_bad 0.56
## MDMQ_good 0.54
## MDMQ_uncomfortable 0.55
## MDMQ_comfortable 0.54
## MDMQ_unhappy 0.53
## MDMQ_unsatisfied 0.55
## MDMQ_happy 0.54
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## MDMQ_satisfied 124 0.79 0.78 0.74 0.71 3.6 0.94
## MDMQ_bad 124 0.72 0.74 0.69 0.65 4.5 0.67
## MDMQ_good 124 0.80 0.80 0.78 0.73 3.9 0.89
## MDMQ_uncomfortable 124 0.76 0.76 0.72 0.68 4.4 0.89
## MDMQ_comfortable 124 0.82 0.82 0.79 0.75 3.7 0.92
## MDMQ_unhappy 124 0.80 0.80 0.76 0.72 4.3 0.90
## MDMQ_unsatisfied 124 0.75 0.74 0.70 0.66 4.2 1.03
## MDMQ_happy 124 0.83 0.83 0.81 0.76 3.6 0.90
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## MDMQ_satisfied 0.02 0.12 0.20 0.52 0.13 0
## MDMQ_bad 0.00 0.01 0.07 0.36 0.56 0
## MDMQ_good 0.02 0.06 0.16 0.53 0.23 0
## MDMQ_uncomfortable 0.01 0.04 0.10 0.24 0.60 0
## MDMQ_comfortable 0.01 0.10 0.25 0.45 0.19 0
## MDMQ_unhappy 0.00 0.07 0.07 0.30 0.56 0
## MDMQ_unsatisfied 0.02 0.07 0.08 0.31 0.51 0
## MDMQ_happy 0.02 0.10 0.27 0.48 0.14 0
## Pleasantness total
## alpha 0.9082951 0.9082951
## omega 0.9099398 0.9099398
## omega2 0.9099398 0.9099398
## omega3 0.9077040 0.9077040
## avevar 0.5622776 0.5622776
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = MDMQ_w)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.91 0.54 9.3 0.013 3.5 0.81 0.53
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.9 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## MDMQ_rested 0.89 0.89 0.90 0.53 8.0 0.015 0.0106 0.53
## MDMQ_weak 0.89 0.89 0.90 0.54 8.3 0.015 0.0085 0.53
## MDMQ_tired 0.89 0.89 0.89 0.54 8.1 0.015 0.0081 0.53
## MDMQ_lively 0.89 0.89 0.90 0.54 8.2 0.015 0.0107 0.53
## MDMQ_sleepy 0.88 0.88 0.88 0.51 7.4 0.017 0.0076 0.51
## MDMQ_awake 0.89 0.89 0.89 0.53 7.8 0.016 0.0084 0.52
## MDMQ_fresh 0.90 0.90 0.91 0.55 8.7 0.014 0.0098 0.53
## MDMQ_exhausted 0.89 0.90 0.90 0.55 8.5 0.015 0.0089 0.53
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## MDMQ_rested 124 0.79 0.79 0.75 0.71 3.1 1.13
## MDMQ_weak 124 0.76 0.75 0.72 0.67 3.7 1.04
## MDMQ_tired 124 0.78 0.78 0.75 0.70 3.5 1.07
## MDMQ_lively 124 0.75 0.76 0.71 0.68 3.3 0.98
## MDMQ_sleepy 124 0.85 0.85 0.84 0.79 3.7 1.08
## MDMQ_awake 124 0.80 0.81 0.78 0.74 3.5 0.95
## MDMQ_fresh 124 0.71 0.71 0.65 0.62 3.2 1.05
## MDMQ_exhausted 124 0.73 0.73 0.68 0.64 3.8 1.06
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## MDMQ_rested 0.09 0.21 0.30 0.30 0.10 0
## MDMQ_weak 0.02 0.15 0.18 0.41 0.25 0
## MDMQ_tired 0.03 0.17 0.24 0.38 0.18 0
## MDMQ_lively 0.04 0.15 0.32 0.40 0.09 0
## MDMQ_sleepy 0.01 0.18 0.19 0.35 0.27 0
## MDMQ_awake 0.02 0.19 0.19 0.52 0.09 0
## MDMQ_fresh 0.04 0.24 0.27 0.35 0.10 0
## MDMQ_exhausted 0.00 0.12 0.29 0.23 0.36 0
## Wakefulness total
## alpha 0.9020401 0.9020401
## omega 0.9029420 0.9029420
## omega2 0.9029420 0.9029420
## omega3 0.9009454 0.9009454
## avevar 0.5404058 0.5404058
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = MDMQ_c)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.92 0.57 11 0.012 3.9 0.83 0.54
##
## lower alpha upper 95% confidence boundaries
## 0.89 0.91 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## MDMQ_restless 0.9 0.9 0.91 0.58 9.5 0.013 0.0079 0.53
## MDMQ_serene 0.9 0.9 0.91 0.57 9.4 0.013 0.0077 0.56
## MDMQ_uneasy 0.9 0.9 0.91 0.57 9.3 0.014 0.0087 0.56
## MDMQ_relaxed 0.9 0.9 0.90 0.56 9.0 0.014 0.0073 0.52
## MDMQ_balanced 0.9 0.9 0.91 0.56 9.0 0.014 0.0078 0.56
## MDMQ_tense 0.9 0.9 0.91 0.57 9.3 0.014 0.0091 0.53
## MDMQ_nervous 0.9 0.9 0.91 0.58 9.5 0.013 0.0089 0.56
## MDMQ_calm 0.9 0.9 0.91 0.57 9.4 0.013 0.0072 0.56
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## MDMQ_restless 124 0.78 0.77 0.73 0.69 3.9 1.20
## MDMQ_serene 124 0.78 0.78 0.75 0.71 3.7 1.02
## MDMQ_uneasy 124 0.79 0.79 0.76 0.72 4.1 1.08
## MDMQ_relaxed 124 0.82 0.82 0.80 0.75 3.5 1.05
## MDMQ_balanced 124 0.81 0.81 0.79 0.74 3.5 1.05
## MDMQ_tense 124 0.80 0.79 0.76 0.72 4.1 1.08
## MDMQ_nervous 124 0.76 0.77 0.73 0.70 4.5 0.88
## MDMQ_calm 124 0.78 0.78 0.75 0.71 3.7 1.00
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## MDMQ_restless 0.05 0.11 0.15 0.27 0.41 0
## MDMQ_serene 0.04 0.07 0.25 0.42 0.22 0
## MDMQ_uneasy 0.02 0.09 0.13 0.31 0.45 0
## MDMQ_relaxed 0.04 0.14 0.25 0.41 0.16 0
## MDMQ_balanced 0.02 0.18 0.26 0.37 0.17 0
## MDMQ_tense 0.02 0.10 0.11 0.31 0.45 0
## MDMQ_nervous 0.02 0.02 0.09 0.23 0.65 0
## MDMQ_calm 0.01 0.16 0.17 0.46 0.20 0
## Calmness total
## alpha 0.9126016 0.9126016
## omega 0.9129147 0.9129147
## omega2 0.9129147 0.9129147
## omega3 0.9099981 0.9099981
## avevar 0.5691390 0.5691390
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
| Pleasantness | Wakefulness | Calmness | |
|---|---|---|---|
| Pleasantness | 1.0000000 | 0.6658641 | 0.8335743 |
| Wakefulness | 0.6658641 | 1.0000000 | 0.5208783 |
| Calmness | 0.8335743 | 0.5208783 | 1.0000000 |
Bosmans, A. (2006). Scents and Sensibility: When Do (In)Congruent Ambient Scents Influence Product Evaluations? Journal of Marketing, 70(3), 32–43. https://doi.org/10.1509/jmkg.70.3.32
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = Arousal_Scale_Vars, check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.44 0.47 0.45 0.18 0.88 0.083 0.93 0.87 0.12
##
## lower alpha upper 95% confidence boundaries
## 0.28 0.44 0.6
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## Arousal_RelaxedVSTense- 0.50 0.51 0.46 0.258 1.04 0.078
## Arousal_BoringVSStimulating 0.33 0.35 0.28 0.152 0.54 0.105
## Arousal_UnlivelyVSLively 0.24 0.24 0.18 0.097 0.32 0.115
## Arousal_DullVSBright 0.41 0.45 0.40 0.215 0.82 0.095
## var.r med.r
## Arousal_RelaxedVSTense- 0.0380 0.294
## Arousal_BoringVSStimulating 0.0154 0.096
## Arousal_UnlivelyVSLively 0.0025 0.096
## Arousal_DullVSBright 0.0372 0.147
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Arousal_RelaxedVSTense- 90 0.60 0.53 0.20 0.14 0.88 1.7
## Arousal_BoringVSStimulating 90 0.59 0.66 0.50 0.30 1.03 1.2
## Arousal_UnlivelyVSLively 90 0.68 0.72 0.63 0.38 0.90 1.3
## Arousal_DullVSBright 90 0.60 0.58 0.32 0.21 0.92 1.5
##
## Non missing response frequency for each item
## -3 -2 -1 0 1 2 3 miss
## Arousal_RelaxedVSTense 0.12 0.37 0.18 0.10 0.10 0.10 0.03 0.27
## Arousal_BoringVSStimulating 0.01 0.04 0.03 0.11 0.47 0.28 0.06 0.27
## Arousal_UnlivelyVSLively 0.01 0.07 0.07 0.18 0.27 0.37 0.04 0.27
## Arousal_DullVSBright 0.03 0.03 0.10 0.16 0.29 0.27 0.12 0.27
## Arousal total
## alpha 0.1863647 0.1863647
## omega 0.6606215 0.6606215
## omega2 0.6606215 0.6606215
## omega3 0.7529397 0.7529397
## avevar 0.5503456 0.5503456
Bosmans, A. (2006). Scents and Sensibility: When Do (In)Congruent Ambient Scents Influence Product Evaluations? Journal of Marketing, 70(3), 32–43. https://doi.org/10.1509/jmkg.70.3.32
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = Pleasantness_Scale_Vars)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.93 0.93 0.92 0.72 13 0.011 0.83 1.4 0.7
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.93 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r
## Pleasantness_BadVSGood 0.90 0.90 0.88 0.70
## Pleasantness_UnpleasurableVSPleasurable 0.91 0.91 0.89 0.71
## Pleasantness_UncomfortableVSComfortable 0.92 0.92 0.91 0.74
## Pleasantness_NegativeVSPositive 0.90 0.90 0.88 0.69
## Pleasantness_UnattractiveVSAttractive 0.92 0.92 0.90 0.74
## S/N alpha se var.r med.r
## Pleasantness_BadVSGood 9.2 0.014 0.0025 0.70
## Pleasantness_UnpleasurableVSPleasurable 9.8 0.014 0.0046 0.68
## Pleasantness_UncomfortableVSComfortable 11.6 0.012 0.0051 0.75
## Pleasantness_NegativeVSPositive 8.9 0.015 0.0039 0.67
## Pleasantness_UnattractiveVSAttractive 11.5 0.012 0.0040 0.73
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Pleasantness_BadVSGood 90 0.90 0.91 0.89 0.85 1.04 1.5
## Pleasantness_UnpleasurableVSPleasurable 90 0.89 0.89 0.86 0.82 0.87 1.7
## Pleasantness_UncomfortableVSComfortable 90 0.85 0.84 0.78 0.75 0.64 1.6
## Pleasantness_NegativeVSPositive 90 0.91 0.91 0.90 0.86 1.02 1.6
## Pleasantness_UnattractiveVSAttractive 90 0.84 0.84 0.79 0.76 0.56 1.5
##
## Non missing response frequency for each item
## -3 -2 -1 0 1 2 3 miss
## Pleasantness_BadVSGood 0.03 0.06 0.06 0.12 0.26 0.38 0.10 0.27
## Pleasantness_UnpleasurableVSPleasurable 0.08 0.02 0.12 0.08 0.27 0.30 0.13 0.27
## Pleasantness_UncomfortableVSComfortable 0.04 0.10 0.08 0.17 0.26 0.27 0.09 0.27
## Pleasantness_NegativeVSPositive 0.04 0.08 0.03 0.10 0.30 0.29 0.16 0.27
## Pleasantness_UnattractiveVSAttractive 0.07 0.06 0.07 0.21 0.32 0.22 0.06 0.27
## Pleasantness total
## alpha 0.9259173 0.9259173
## omega 0.9268759 0.9268759
## omega2 0.9268759 0.9268759
## omega3 0.9255454 0.9255454
## avevar 0.7183621 0.7183621
Own creation
Herrmann, A., Zidansek, M., Sprott, D. E., & Spangenberg, E. R. (2013). The Power of Simplicity: Processing Fluency and the Effects of Olfactory Cues on Retail Sales. Journal of Retailing, 89(1), 30–43. https://doi.org/10.1016/j.jretai.2012.08.002
Lévy, C. M., MacRae, A., & Köster, E. P. (2006). Perceived stimulus complexity and food preference development. Acta Psychologica, 123(3), 394–413. https://doi.org/10.1016/j.actpsy.2006.06.006
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = Simple_Complex_scale_Scale_Vars)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.68 0.68 0.66 0.42 2.1 0.052 42 17 0.51
##
## lower alpha upper 95% confidence boundaries
## 0.58 0.68 0.78
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## SimpleVSComplex 0.29 0.29 0.17 0.17 0.42 0.126
## UncomplicatedVSComplicated 0.67 0.67 0.51 0.51 2.05 0.059
## PureVSDifferentiated 0.72 0.72 0.57 0.57 2.61 0.050
## var.r med.r
## SimpleVSComplex NA 0.17
## UncomplicatedVSComplicated NA 0.51
## PureVSDifferentiated NA 0.57
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## SimpleVSComplex 90 0.88 0.88 0.83 0.70 43 22
## UncomplicatedVSComplicated 90 0.73 0.74 0.57 0.42 41 22
## PureVSDifferentiated 90 0.73 0.72 0.50 0.38 42 24
## Simple_Complex_scale total
## alpha 0.6765754 0.6765754
## omega 159.1729757 159.1729757
## omega2 159.1729757 159.1729757
## omega3 116.4733557 116.4733557
## avevar 205.4379846 205.4379846
Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. Journal of Experimental Psychology: Human Perception and Performance, 8(4), 521–535. https://doi.org/10.1037/0096-1523.8.4.521
##
## Reliability analysis
## Call: psych::alpha(x = Kimchi_Palmer_Scale_Vars)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.93 0.93 0.94 0.54 14 0.0091 59 29 0.53
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.93 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## V1 0.93 0.93 0.94 0.55 14 0.0092 0.0063 0.56
## V2 0.92 0.93 0.93 0.53 12 0.0101 0.0087 0.53
## V3 0.92 0.92 0.93 0.53 12 0.0102 0.0084 0.52
## V4 0.92 0.92 0.93 0.53 12 0.0102 0.0083 0.52
## V5 0.93 0.93 0.94 0.55 13 0.0095 0.0083 0.55
## V6 0.93 0.93 0.94 0.54 13 0.0097 0.0078 0.55
## V7 0.93 0.93 0.94 0.53 13 0.0100 0.0089 0.52
## V8 0.93 0.93 0.93 0.53 13 0.0099 0.0075 0.53
## V9 0.93 0.93 0.94 0.54 13 0.0098 0.0090 0.55
## V10 0.93 0.93 0.94 0.53 13 0.0099 0.0087 0.53
## V11 0.92 0.93 0.93 0.53 12 0.0102 0.0082 0.53
## V12 0.93 0.93 0.93 0.53 12 0.0100 0.0079 0.53
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## V1 97 0.65 0.64 0.60 0.57 50 40
## V2 97 0.79 0.79 0.77 0.75 49 40
## V3 97 0.81 0.80 0.79 0.76 51 40
## V4 97 0.81 0.81 0.80 0.77 63 38
## V5 97 0.70 0.69 0.65 0.63 55 40
## V6 97 0.72 0.72 0.70 0.66 63 37
## V7 97 0.78 0.78 0.76 0.73 60 39
## V8 97 0.76 0.76 0.75 0.71 70 34
## V9 97 0.74 0.74 0.71 0.68 53 40
## V10 97 0.76 0.77 0.74 0.71 67 36
## V11 97 0.80 0.80 0.78 0.75 60 38
## V12 97 0.78 0.79 0.77 0.74 70 35
## Kimchi_Palmer_Scale total
## alpha 0.9318784 0.9318784
## omega 0.9323435 0.9323435
## omega2 0.9323435 0.9323435
## omega3 0.9314013 0.9314013
## avevar 0.5363625 0.5363625
Story: Madzharov, A. V., Block, L. G., & Morrin, M. (2015). The Cool Scent of Power: Effects of Ambient Scent on Consumer Preferences and Choice Behavior. Journal of Marketing, 79(1), 83–96. https://doi.org/10.1509/jm.13.0263
Adams, C., & Doucé, L. (2017). What’s in a scent?: Meaning, shape, and sensorial concepts elicited by scents. Journal of Sensory Studies, 32(2), e12256. https://doi.org/10.1111/joss.12256
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 2.13 | 1.19 | 1.00 | 6.00 | 59 |
| Vanilla | 4.09 | 1.78 | 1.00 | 7.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 38.25 | 1 | 88 | 2.26 | < .001 | .303 |
Post hocs:
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -1.96 0.317 88 -6.185 <.0001
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 23.85 | 19.50 | 0.00 | 68.00 | 59 |
| Vanilla | 44.52 | 19.01 | 0.00 | 77.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 25.90 | 1 | 88 | 371.10 | < .001 | .227 |
Post hocs
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -20.7 4.06 88 -5.090 <.0001
Story: Herrmann, A., Zidansek, M., Sprott, D. E., & Spangenberg, E. R. (2013). The Power of Simplicity: Processing Fluency and the Effects of Olfactory Cues on Retail Sales. Journal of Retailing, 89(1), 30–43. https://doi.org/10.1016/j.jretai.2012.08.002
Lévy, C. M., MacRae, A., & Köster, E. P. (2006). Perceived stimulus complexity and food preference development. Acta Psychologica, 123(3), 394–413. https://doi.org/10.1016/j.actpsy.2006.06.006
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 4.82 | 1 | 88 | 458.07 | .031 | .052 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -9.91 4.51 88 -2.196 0.0307
Herrmann, A., Zidansek, M., Sprott, D. E., & Spangenberg, E. R. (2013). The Power of Simplicity: Processing Fluency and the Effects of Olfactory Cues on Retail Sales. Journal of Retailing, 89(1), 30–43. https://doi.org/10.1016/j.jretai.2012.08.002
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.00 | 1 | 88 | 475.51 | .962 | .000 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -0.22 4.6 88 -0.048 0.9619
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 13.84 | 1 | 88 | 486.29 | < .001 | .136 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -17.3 4.65 88 -3.720 0.0003
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 6.56 | 1 | 88 | 286.59 | .012 | .069 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -9.14 3.57 88 -2.562 0.0121
Bosmans, A. (2006). Scents and Sensibility: When Do (In)Congruent Ambient Scents Influence Product Evaluations? Journal of Marketing, 70(3), 32–43. https://doi.org/10.1509/jmkg.70.3.32
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 2.25 | 1 | 88 | 1.91 | .137 | .025 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -0.437 0.291 88 -1.500 0.1373
Bosmans, A. (2006). Scents and Sensibility: When Do (In)Congruent Ambient Scents Influence Product Evaluations? Journal of Marketing, 70(3), 32–43. https://doi.org/10.1509/jmkg.70.3.32
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 7.33 | 1 | 88 | 0.55 | .008 | .077 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 0.423 0.156 88 2.708 0.0081
Morrin, M., & Ratneshwar, S. (2003). Does It Make Sense to Use Scents to Enhance Brand Memory? Journal of Marketing Research, 40(1), 10–25. https://doi.org/10.1509/jmkr.40.1.10.19128
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 1.54 | 1 | 88 | 2.46 | .218 | .017 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 0.41 0.331 88 1.240 0.2181
Spangenberg, E. R., Crowley, A. E., & Henderson, P. W. (1996). Improving the Store Environment: Do Olfactory Cues Affect Evaluations and Behaviors? Journal of Marketing, 60(2), 67–80. https://doi.org/10.2307/1251931
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.00 | 1 | 88 | 1.25 | .977 | .000 |
Post hocs:
| x | |
|---|---|
| peppermint | NA |
| Vanilla | NA |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 0.00692 0.236 88 0.029 0.9767
*******************************************************
Zhang, H., Arens, E., & Pasut, W. (2011). Air temperature thresholds for indoor comfort and perceived air quality. Building Research & Information, 39(2), 134–144. https://doi.org/10.1080/09613218.2011.552703
Girard, A., Lichters, M., Sarstedt, M., & Biswas, D. (2019). Short- and Long-term Effects of nonconsciously Processed Ambient Scents in a Servicescape: Findings from two Field Experiments. Journal of Service Research. Advance online publication. https://doi.org/10.1177/1094670519842333
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.03 | 1 | 122 | 515.01 | .854 | .000 |
Post hocs:
| x | |
|---|---|
| peppermint | 72.66102 |
| Vanilla | 73.41538 |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla -0.754 4.08 122 -0.185 0.8536
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676. https://doi.org/10.1038/nature03701
Lichters, M., Brunnlieb, C., Nave, G., Sarstedt, M., & Vogt, B. (2016). The Influence of Serotonin Deficiency on Choice Deferral and the Compromise Effect. Journal of Marketing Research, 53(2), 183–198. https://doi.org/10.1509/jmr.14.0482
MDMQ single items
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| MDMQ_satisfied (mean (SD)) | 3.63 (0.69) | 3.60 (1.13) | 0.874 | |
| MDMQ_rested (mean (SD)) | 3.25 (1.08) | 3.00 (1.17) | 0.212 | |
| MDMQ_restless (mean (SD)) | 3.93 (1.20) | 3.85 (1.21) | 0.693 | |
| MDMQ_bad (mean (SD)) | 4.42 (0.67) | 4.51 (0.66) | 0.487 | |
| MDMQ_weak (mean (SD)) | 3.69 (1.04) | 3.77 (1.06) | 0.694 | |
| MDMQ_serene (mean (SD)) | 3.68 (1.09) | 3.72 (0.96) | 0.807 | |
| MDMQ_tired (mean (SD)) | 3.59 (0.95) | 3.42 (1.17) | 0.358 | |
| MDMQ_good (mean (SD)) | 3.93 (0.81) | 3.85 (0.96) | 0.591 | |
| MDMQ_uneasy (mean (SD)) | 4.03 (1.16) | 4.11 (1.00) | 0.704 | |
| MDMQ_lively (mean (SD)) | 3.46 (0.79) | 3.23 (1.11) | 0.199 | |
| MDMQ_uncomfortable (mean (SD)) | 4.41 (0.79) | 4.38 (0.98) | 0.891 | |
| MDMQ_relaxed (mean (SD)) | 3.69 (1.04) | 3.35 (1.04) | 0.070 | |
| MDMQ_sleepy (mean (SD)) | 3.83 (0.99) | 3.58 (1.16) | 0.208 | |
| MDMQ_comfortable (mean (SD)) | 3.68 (0.88) | 3.72 (0.96) | 0.786 | |
| MDMQ_balanced (mean (SD)) | 3.46 (1.04) | 3.51 (1.06) | 0.792 | |
| MDMQ_unhappy (mean (SD)) | 4.39 (0.85) | 4.29 (0.95) | 0.549 | |
| MDMQ_awake (mean (SD)) | 3.61 (0.81) | 3.37 (1.05) | 0.159 | |
| MDMQ_unsatisfied (mean (SD)) | 4.24 (0.97) | 4.18 (1.09) | 0.777 | |
| MDMQ_tense (mean (SD)) | 4.14 (1.15) | 4.02 (1.02) | 0.539 | |
| MDMQ_fresh (mean (SD)) | 3.46 (1.06) | 3.00 (1.00) | 0.015 | |
| MDMQ_happy (mean (SD)) | 3.71 (0.77) | 3.55 (1.00) | 0.329 | |
| MDMQ_nervous (mean (SD)) | 4.39 (0.85) | 4.52 (0.90) | 0.401 | |
| MDMQ_exhausted (mean (SD)) | 3.93 (0.98) | 3.74 (1.12) | 0.310 | |
| MDMQ_calm (mean (SD)) | 3.73 (1.03) | 3.65 (0.98) | 0.647 | |
Pleasantness
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.10 | 1 | 122 | 0.49 | .756 | .001 |
Post hocs:
| x | |
|---|---|
| peppermint | 4.050847 |
| Vanilla | 4.011539 |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 0.0393 0.126 122 0.311 0.7562
Wakefulness
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 2.23 | 1 | 122 | 0.64 | .138 | .018 |
Post hocs:
| x | |
|---|---|
| peppermint | 3.603814 |
| Vanilla | 3.388462 |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 0.215 0.144 122 1.493 0.1380
Calmness
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.08 | 1 | 122 | 0.69 | .784 | .001 |
Post hocs:
| x | |
|---|---|
| peppermint | 3.881356 |
| Vanilla | 3.840385 |
## contrast estimate SE df t.ratio p.value
## peppermint - Vanilla 0.041 0.149 122 0.275 0.7838
| peppermint | Vanilla | |
|---|---|---|
| No | 44.1 | 53.8 |
| Yes | 55.9 | 46.2 |
| Total | 100.0 | 100.0 |
| Count | 59.0 | 65.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.2875509
Adams, C., & Doucé, L. (2017). What’s in a scent?: Meaning, shape, and sensorial concepts elicited by scents. Journal of Sensory Studies, 32(2), e12256. https://doi.org/10.1111/joss.12256
Herrmann, A., Zidansek, M., Sprott, D. E., & Spangenberg, E. R. (2013). The Power of Simplicity: Processing Fluency and the Effects of Olfactory Cues on Retail Sales. Journal of Retailing, 89(1), 30–43. https://doi.org/10.1016/j.jretai.2012.08.002
include: active vs. passive, weak vs. strong, feminine vs. masculine from Adams & Douce (2017), as well as simple vs. complex, uncomplicated vs. complicated, pure vs. differentiated from Herrmann et al. (2013), and additionally artificial vs. natural
BasicVAS single items
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| ActiveVSPassive (mean (SD)) | 36.15 (25.65) | 40.36 (21.91) | 0.405 | |
| WeakVSStrong (mean (SD)) | 66.22 (20.43) | 65.61 (18.43) | 0.883 | |
| FeminineVSMasculine (mean (SD)) | 50.61 (18.16) | 33.39 (16.16) | <0.001 | |
| ArtificialVSNatural (mean (SD)) | 38.91 (25.11) | 41.43 (22.88) | 0.621 | |
| SimpleVSComplex (mean (SD)) | 38.57 (20.54) | 48.48 (22.27) | 0.031 | |
| UncomplicatedVSComplicated (mean (SD)) | 40.85 (21.93) | 41.07 (21.68) | 0.962 | |
| PureVSDifferentiated (mean (SD)) | 33.11 (22.26) | 50.41 (21.83) | <0.001 | |
include: bright vs. dim, cold vs. hot, fragile vs. sturdy, high vs. low, light vs. dark, light vs. heavy, loud vs. quite, rough vs. smooth, shallow vs. deep, soft vs. hard.
CrossModalVAS single items
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| BrightVSDim (mean (SD)) | 26.87 (18.10) | 43.05 (21.77) | <0.001 | |
| ColdVSHot (mean (SD)) | 23.85 (19.50) | 44.52 (19.01) | <0.001 | |
| FragileVSSturdy (mean (SD)) | 52.54 (16.88) | 47.70 (20.03) | 0.218 | |
| HighVSLow (mean (SD)) | 42.28 (19.73) | 47.05 (18.51) | 0.241 | |
| LightVSDark (mean (SD)) | 31.96 (17.09) | 37.61 (20.13) | 0.154 | |
| LightVSHeavy (mean (SD)) | 37.09 (18.01) | 48.25 (25.34) | 0.018 | |
| LoudVSQuiet (mean (SD)) | 54.24 (20.08) | 56.61 (19.31) | 0.569 | |
| RoughVSSmooth (mean (SD)) | 60.57 (20.76) | 68.91 (18.88) | 0.049 | |
| ShallowVSDeep (mean (SD)) | 47.87 (19.03) | 51.68 (21.62) | 0.376 | |
| SoftVSHard (mean (SD)) | 52.67 (22.59) | 30.14 (18.86) | <0.001 | |
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 3.83 | 1.33 | 1.00 | 6.00 | 59 |
| Vanilla | 4.59 | 1.32 | 2.00 | 9.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 7.96 | 1 | 95 | 1.75 | .006 | .077 |
Descriptives for each Scent
| ScentNumber | Mean | SD | Min | Max |
|---|---|---|---|---|
| peppermint | 24.43 | 0.31 | 24.20 | 24.95 |
| Vanilla | 24.75 | 0.36 | 24.30 | 25.25 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.06 | 1 | 95 | 4.18 | .804 | .001 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.12 | 1 | 95 | 4.21 | .733 | .001 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.35 | 1 | 95 | 167.39 | .558 | .004 |
The rest on this script is devoted to assess effects in consumer decision making between vanilla and peppermint scent
Story: Study 1 in: Madzharov, A. V., Block, L. G., & Morrin, M. (2015). The Cool Scent of Power: Effects of Ambient Scent on Consumer Preferences and Choice Behavior. Journal of Marketing, 79(1), 83–96. https://doi.org/10.1509/jm.13.0263
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.02 | 1 | 122 | 5.00 | .887 | .000 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.06 | 1 | 122 | 6.30 | .799 | .001 |
First build scale values as mean of item scores.
Cronbach’s Alpha and G6, and AVE
##
## Reliability analysis
## Call: psych::alpha(x = Ad_Scale_Vars)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.56 0.56 0.39 0.39 1.3 0.079 6.8 2 0.39
##
## lower alpha upper 95% confidence boundaries
## 0.4 0.56 0.71
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CarAdPreference_r1 0.39 0.39 0.15 0.39 NA NA 0.39
## CarAdEffectiveness_r1 0.15 0.39 NA NA NA NA 0.15
## med.r
## CarAdPreference_r1 0.39
## CarAdEffectiveness_r1 0.39
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CarAdPreference_r1 124 0.81 0.83 0.52 0.39 7.3 2.2
## CarAdEffectiveness_r1 124 0.85 0.83 0.52 0.39 6.3 2.5
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 8 9 miss
## CarAdPreference_r1 0.05 0.02 0.04 0.02 0.03 0.02 0.21 0.24 0.36 0
## CarAdEffectiveness_r1 0.05 0.05 0.13 0.03 0.02 0.13 0.20 0.14 0.25 0
## Ad total
## alpha 0.5553194 0.5553194
## omega 0.5681149 0.5681149
## omega2 0.5681149 0.5681149
## omega3 0.5681149 0.5681149
## avevar 0.4021029 0.4021029
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.01 | 1 | 122 | 3.91 | .936 | .000 |
Story: Ma, H., Bradshaw, H. K., Janakiraman, N., & Hill, S. E. (2019). Spending as protection: The need for safety increases preference for luxury products. Marketing Letters, 30(1), 45–56. https://doi.org/10.1007/s11002-019-09480-0
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 5.03 | 2.62 | 1.00 | 9.00 | 59 |
| Vanilla | 6.15 | 2.61 | 1.00 | 9.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 3.93 | 1 | 84 | 6.84 | .051 | .045 |
[1] “one-sided t-test p:” [1] 0.02545431
| peppermint | Vanilla | |
|---|---|---|
| CDU | 2 | 3 |
| SPD | 2 | 2 |
| DieGruenen | 15 | 21 |
| AFD | 0 | 4 |
| DieLinke | 8 | 4 |
| FDP | 10 | 8 |
| CSU | 1 | 0 |
| DieBlauePartei | 0 | 0 |
| FreieWaehler | 0 | 0 |
| BuergerInWut | 0 | 0 |
| LKR | 0 | 1 |
| NPD | 0 | 0 |
| OeDP | 1 | 1 |
| DiePartei | 9 | 5 |
| peppermint | Vanilla | |
|---|---|---|
| CDU | 4.2 | 6.1 |
| SPD | 4.2 | 4.1 |
| DieGruenen | 31.2 | 42.9 |
| AFD | 0.0 | 8.2 |
| DieLinke | 16.7 | 8.2 |
| FDP | 20.8 | 16.3 |
| CSU | 2.1 | 0.0 |
| DieBlauePartei | 0.0 | 0.0 |
| FreieWaehler | 0.0 | 0.0 |
| BuergerInWut | 0.0 | 0.0 |
| LKR | 0.0 | 2.0 |
| NPD | 0.0 | 0.0 |
| OeDP | 2.1 | 2.0 |
| DiePartei | 18.8 | 10.2 |
| Total | 100.1 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.3088456
| peppermint | Vanilla | |
|---|---|---|
| others | 100 | 89.8 |
| Right-wing | 0 | 10.2 |
| Total | 100 | 100.0 |
| Count | 48 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.05615844
## [1] "Fisher's directed p value (expectation: consumers under vanilla vote more for right-wing parties):"
## [1] 0.02958885
Descriptives
| ScentNumber | Mean | SD | Min | Max |
|---|---|---|---|---|
| peppermint | 0.77 | 0.24 | 0.25 | 1.00 |
| Vanilla | 0.75 | 0.25 | 0.00 | 1.00 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.18 | 1 | 95 | 0.06 | .674 | .002 |
Mann-Whitney-U-Test
##
## Wilcoxon rank sum test with continuity correction
##
## data: Product_Choice_PurchaseRate by ScentNumber
## W = 1225.5, p-value = 0.7076
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -6.860703e-06 2.519429e-05
## sample estimates:
## difference in location
## 6.993813e-05
| peppermint | Vanilla | |
|---|---|---|
| Buy | 79.2 | 83.7 |
| No-Buy | 20.8 | 16.3 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.610195
## [1] "Fisher's directed p value:"
## [1] 0.3785785
| peppermint | Vanilla | |
|---|---|---|
| Buy | 87.5 | 85.7 |
| No-Buy | 12.5 | 14.3 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 1
## [1] "Fisher's directed p value:"
## [1] 0.7100059
| peppermint | Vanilla | |
|---|---|---|
| Buy | 66.7 | 65.3 |
| No-Buy | 33.3 | 34.7 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 1
## [1] "Fisher's directed p value:"
## [1] 0.6387398
| peppermint | Vanilla | |
|---|---|---|
| Buy | 75 | 65.3 |
| No-Buy | 25 | 34.7 |
| Total | 100 | 100.0 |
| Count | 48 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.3762578
## [1] "Fisher's directed p value:"
## [1] 0.897184
Now, filter out participants that are colorblind
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 45 | 48 | ||
| Color_Associations_red (mean (SD)) | 1.82 (1.43) | 3.15 (1.84) | <0.001 | |
| Color_Associations_green (mean (SD)) | 4.80 (2.21) | 2.94 (1.77) | <0.001 | |
| Color_Associations_pink (mean (SD)) | 2.20 (1.67) | 3.42 (1.88) | 0.001 | |
| Color_Associations_gray (mean (SD)) | 2.80 (2.03) | 2.50 (1.96) | 0.470 | |
| Color_Associations_orange (mean (SD)) | 1.76 (1.37) | 3.65 (2.03) | <0.001 | |
| Color_Associations_blue (mean (SD)) | 3.69 (2.12) | 2.88 (1.75) | 0.046 | |
| Color_Associations_black (mean (SD)) | 1.93 (1.76) | 1.75 (1.45) | 0.584 | |
| Color_Associations_white (mean (SD)) | 5.56 (1.57) | 4.21 (2.06) | 0.001 | |
| Color_Associations_yellow (mean (SD)) | 2.56 (1.93) | 4.65 (1.99) | <0.001 | |
| Color_Associations_purple (mean (SD)) | 2.36 (1.84) | 3.06 (1.68) | 0.056 | |
| Color_Associations_brown (mean (SD)) | 2.02 (1.70) | 3.38 (2.29) | 0.002 | |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.08 | 1 | 91 | 633.51 | .774 | .001 |
Mann-Whitney-U-Test
##
## Wilcoxon rank sum test with continuity correction
##
## data: LogoLiking_1 by ScentNumber
## W = 1137, p-value = 0.6639
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -8.999955 11.999999
## sample estimates:
## difference in location
## 2.000031
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 45 | 48 | ||
| Logo_dynamic (mean (SD)) | 5.13 (1.63) | 5.08 (1.49) | 0.877 | |
| Logo_brave (mean (SD)) | 4.27 (1.64) | 4.23 (1.59) | 0.911 | |
| Logo_sentimental (mean (SD)) | 2.78 (1.54) | 2.77 (1.77) | 0.984 | |
| Logo_reliable (mean (SD)) | 3.04 (1.52) | 3.21 (1.29) | 0.576 | |
| Logo_active (mean (SD)) | 5.07 (1.42) | 4.90 (1.37) | 0.557 | |
| Logo_romantic (mean (SD)) | 2.98 (1.74) | 2.77 (1.93) | 0.589 | |
| Logo_aggrassive (mean (SD)) | 4.24 (1.52) | 3.48 (1.69) | 0.024 | |
| Logo_ordinary (mean (SD)) | 2.98 (1.59) | 2.52 (1.29) | 0.130 | |
| Logo_down_to_earth (mean (SD)) | 2.33 (1.21) | 2.65 (1.41) | 0.255 | |
| Logo_plain (mean (SD)) | 2.80 (1.65) | 2.31 (1.57) | 0.148 | |
| Logo_innovative (mean (SD)) | 3.76 (1.58) | 3.88 (1.63) | 0.721 | |
| Logo_responsibly (mean (SD)) | 2.96 (1.38) | 3.25 (1.66) | 0.356 | |
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 5.67 | 2.12 | 0.00 | 10.00 | 59 |
| Vanilla | 5.24 | 1.98 | 0.00 | 9.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 1.03 | 1 | 95 | 4.21 | .314 | .011 |
Mann-Whitney-U-Test
##
## Wilcoxon rank sum test with continuity correction
##
## data: Anagramm_Total_correct by ScentNumber
## W = 1333, p-value = 0.2528
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -5.499321e-06 1.000050e+00
## sample estimates:
## difference in location
## 8.308531e-05
Ampel
| peppermint | Vanilla | |
|---|---|---|
| 0 | 41.7 | 49 |
| 1 | 58.3 | 51 |
| Total | 100.0 | 100 |
| Count | 48.0 | 49 |
## [1] "Fisher's undirected p value:"
## [1] 0.5425965
Asche
| peppermint | Vanilla | |
|---|---|---|
| 0 | 60.4 | 67.3 |
| 1 | 39.6 | 32.7 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.5299101
Salat
| peppermint | Vanilla | |
|---|---|---|
| 0 | 87.5 | 89.8 |
| 1 | 12.5 | 10.2 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.759275
Eichel
| peppermint | Vanilla | |
|---|---|---|
| 0 | 31.2 | 40.8 |
| 1 | 68.8 | 59.2 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.3992745
Gras
| peppermint | Vanilla | |
|---|---|---|
| 0 | 35.4 | 36.7 |
| 1 | 64.6 | 63.3 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 1
Reifen
| peppermint | Vanilla | |
|---|---|---|
| 0 | 62.5 | 49 |
| 1 | 37.5 | 51 |
| Total | 100.0 | 100 |
| Count | 48.0 | 49 |
## [1] "Fisher's undirected p value:"
## [1] 0.2217692
Tor
| peppermint | Vanilla | |
|---|---|---|
| 0 | 4.2 | 2 |
| 1 | 95.8 | 98 |
| Total | 100.0 | 100 |
| Count | 48.0 | 49 |
## [1] "Fisher's undirected p value:"
## [1] 0.617146
Karl
| peppermint | Vanilla | |
|---|---|---|
| 0 | 75 | 79.6 |
| 1 | 25 | 20.4 |
| Total | 100 | 100.0 |
| Count | 48 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.6342137
Bier
| peppermint | Vanilla | |
|---|---|---|
| 0 | 25 | 44.9 |
| 1 | 75 | 55.1 |
| Total | 100 | 100.0 |
| Count | 48 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.05536255
Nebel
| peppermint | Vanilla | |
|---|---|---|
| 0 | 10.4 | 16.3 |
| 1 | 89.6 | 83.7 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.5529392
Combine Eichel and Gras as Anagrams with a solution making a potentail threat salient
| peppermint | Vanilla | |
|---|---|---|
| 0 | 14.6 | 18.4 |
| 1 | 37.5 | 40.8 |
| 2 | 47.9 | 40.8 |
| Total | 100.0 | 100.0 |
| Count | 48.0 | 49.0 |
## [1] "Fisher's undirected p value:"
## [1] 0.7668248
Coding to categories was done manually
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 2.54 | 1.36 | 0.00 | 7.00 | 59 |
| Vanilla | 2.32 | 1.01 | 0.00 | 5.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 0.79 | 1 | 88 | 1.44 | .376 | .009 |
Mann-Whitney-U-Test
##
## Wilcoxon rank sum test with continuity correction
##
## data: OA_Total by ScentNumber
## W = 1067, p-value = 0.6457
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -9.555132e-06 9.999243e-01
## sample estimates:
## difference in location
## 5.333706e-05
| peppermint | Vanilla | p | test | |
|---|---|---|---|---|
| n | 59 | 65 | ||
| OA_Floral = 1 (%) | 0 ( 0.0) | 4 ( 9.1) | 0.114 | |
| OA_Fresh = 1 (%) | 21 ( 45.7) | 12 ( 27.3) | 0.112 | |
| OA_Pleasant = 1 (%) | 5 ( 10.9) | 14 ( 31.8) | 0.030 | |
| OA_Unpleasant = 1 (%) | 2 ( 4.3) | 2 ( 4.5) | 1.000 | |
| OA_fruity = 1 (%) | 1 ( 2.2) | 1 ( 2.3) | 1.000 | |
| OA_Vanilla = 1 (%) | 0 ( 0.0) | 17 ( 38.6) | <0.001 | |
| OA_Mint_Eucalyptus = 1 (%) | 35 ( 76.1) | 2 ( 4.5) | <0.001 | |
| OA_Household_Cleaner_Personal_Care = 1 (%) | 0 ( 0.0) | 2 ( 4.5) | 0.455 | |
| OA_Tasty_hungry = 1 (%) | 0 ( 0.0) | 1 ( 2.3) | 0.982 | |
| OA_too_intense = 1 (%) | 4 ( 8.7) | 1 ( 2.3) | 0.385 | |
| OA_Coffee = 1 (%) | 0 ( 0.0) | 3 ( 6.8) | 0.225 | |
| OA_Warm = 1 (%) | 0 ( 0.0) | 2 ( 4.5) | 0.455 | |
| OA_Summer = 1 (%) | 0 ( 0.0) | 1 ( 2.3) | 0.982 | |
| OA_Cold = 1 (%) | 10 ( 21.7) | 3 ( 6.8) | 0.087 | |
| OA_diverse_Citrus = 1 (%) | 2 ( 4.3) | 1 ( 2.3) | 1.000 | |
| OA_Artificial = 1 (%) | 3 ( 6.5) | 4 ( 9.1) | 0.951 | |
| OA_Scent_Candle_Air_freshener = 1 (%) | 2 ( 4.3) | 4 ( 9.1) | 0.632 | |
| OA_Intrusive = 1 (%) | 1 ( 2.2) | 3 ( 6.8) | 0.577 | |
| OA_Gum_Toothpaste = 1 (%) | 16 ( 34.8) | 2 ( 4.5) | 0.001 | |
| OA_Laundry = 1 (%) | 2 ( 4.3) | 2 ( 4.5) | 1.000 | |
| OA_Sauna = 1 (%) | 1 ( 2.2) | 0 ( 0.0) | 1.000 | |
| OA_Christmas_baking = 0 (%) | 46 (100.0) | 44 (100.0) | NA | |
| OA_Clean_Sterile = 1 (%) | 2 ( 4.3) | 2 ( 4.5) | 1.000 | |
| OA_sweet = 1 (%) | 2 ( 4.3) | 16 ( 36.4) | <0.001 | |
| OA_Caramel = 1 (%) | 0 ( 0.0) | 2 ( 4.5) | 0.455 | |
| OA_refreshing = 1 (%) | 7 ( 15.2) | 0 ( 0.0) | 0.021 | |
| OA_Relaxing = 1 (%) | 1 ( 2.2) | 1 ( 2.3) | 1.000 |
p-values Fisher’s exact for binary oppositions (Vanilla vs. Peppermint)
Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. Journal of Experimental Psychology: Human Perception and Performance, 8(4), 521–535. https://doi.org/10.1037/0096-1523.8.4.521
Higher values = global, relational, lower values = local, analytical
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 55.03 | 29.11 | 0.00 | 100.00 | 59 |
| Vanilla | 63.62 | 28.12 | 0.00 | 99.92 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 2.19 | 1 | 95 | 818.61 | .143 | .022 |
Mann-Whitney-U-Test
##
## Wilcoxon rank sum test with continuity correction
##
## data: Kimchi_Palmer_total by ScentNumber
## W = 972, p-value = 0.142
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -20.083279 2.666722
## sample estimates:
## difference in location
## -8.565718
Ijzerman, H., & Semin, G. R. (2009). The thermometer of social relations: Mapping social proximity on temperature. Psychological Science, 20(10), 1214–1220. https://doi.org/10.1111/j.1467-9280.2009.02434.x
| ScentNumber | Mean | SD | Min | Max | sample |
|---|---|---|---|---|---|
| peppermint | 6.77 | 4.24 | 0.00 | 12.00 | 59 |
| Vanilla | 8.18 | 4.12 | 0.00 | 12.00 | 65 |
ANOVA Analysis
| Effect | \(F\) | \(\mathit{df}_1\) | \(\mathit{df}_2\) | \(\mathit{MSE}\) | \(p\) | \(\hat{\eta}^2_G\) |
|---|---|---|---|---|---|---|
| ScentNumber | 2.77 | 1 | 95 | 17.47 | .099 | .028 |
## [1] "t-test one-sided p:"
## [1] 0.04972162
Mann-Whitney-U-Test
##
## Wilcoxon rank sum test with continuity correction
##
## data: Kimchi_Palmer_total_dich by ScentNumber
## W = 935, p-value = 0.08001
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -3.000003e+00 6.391936e-05
## sample estimates:
## difference in location
## -1.00001
##
## Mediation/Moderation Analysis
## Call: mediate(y = Temperature_r1 ~ ScentNumber + (CoolWarmRating_1),
## data = temp, n.iter = 5000, std = TRUE)
##
## The DV (Y) was Temperature_r1 . The IV (X) was ScentNumber . The mediating variable(s) = CoolWarmRating_1 .
##
## Total effect(c) of ScentNumber on Temperature_r1 = 0.28 S.E. = 0.09 t = 3.22 df= 123 with p = 0.0017
## Direct effect (c') of ScentNumber on Temperature_r1 removing CoolWarmRating_1 = 0.06 S.E. = 0.08 t = 0 df= 121 with p = 1
## Indirect effect (ab) of ScentNumber on Temperature_r1 through CoolWarmRating_1 = 0.22
## Mean bootstrapped indirect effect = 0.22 with standard error = 0.08 Lower CI = 0.08 Upper CI = 0.39
## R = 0.43 R2 = 0.19 F = 14.1 on 2 and 121 DF p-value: 6.08e-08
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
## Call: mediate(y = Temperature_r1 ~ ScentNumber + (CoolWarmRating_1),
## data = temp, n.iter = 5000, std = TRUE)
##
## Direct effect estimates (traditional regression) (c')
## Temperature_r1 se t df Prob
## Intercept 0.00 0.08 0.00 121 1.00e+00
## ScentNumber 0.06 0.10 0.59 121 5.57e-01
## CoolWarmRating_1 0.40 0.10 4.08 121 8.21e-05
##
## R = 0.43 R2 = 0.19 F = 14.1 on 2 and 121 DF p-value: 3.12e-06
##
## Total effect estimates (c)
## Temperature_r1 se t df Prob
## ScentNumber 0.28 0.09 3.22 123 0.00165
##
## 'a' effect estimates
## CoolWarmRating_1 se t df Prob
## Intercept 0.00 0.08 0.00 122 1.00e+00
## ScentNumber 0.55 0.08 7.31 122 3.09e-11
##
## 'b' effect estimates
## Temperature_r1 se t df Prob
## CoolWarmRating_1 0.4 0.1 4.09 122 7.67e-05
##
## 'ab' effect estimates (through mediators)
## Temperature_r1 boot sd lower upper
## ScentNumber 0.22 0.22 0.08 0.08 0.39
## lavaan 0.6-5 ended normally after 21 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 5
##
## Used Total
## Number of observations 90 124
##
## Model Test User Model:
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Parameter Estimates:
##
## Information Expected
## Information saturated (h1) model Structured
## Standard errors Standard
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## Temperature_r1 ~
## ScentNumbr (c) 0.294 0.315 0.934 0.350
## CoolWarmRating_1 ~
## ScentNumbr (a) 1.960 0.313 6.255 0.000
## Temperature_r1 ~
## ClWrmRtn_1 (b) 0.285 0.088 3.229 0.001
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .Temperature_r1 1.553 0.232 6.708 0.000
## .CoolWarmRtng_1 2.209 0.329 6.708 0.000
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|)
## ab 0.560 0.195 2.869 0.004
## total 0.854 0.278 3.075 0.002
##
## Mediation/Moderation Analysis
## Call: mediate(y = CoffeePreference_r1 ~ ScentNumber + (CoolWarmRating_1) +
## (Temperature_r1), data = temp, n.iter = 5000, std = TRUE)
##
## The DV (Y) was CoffeePreference_r1 . The IV (X) was ScentNumber . The mediating variable(s) = CoolWarmRating_1 Temperature_r1 .
##
## Total effect(c) of ScentNumber on CoffeePreference_r1 = 0.21 S.E. = 0.09 t = 2.4 df= 123 with p = 0.018
## Direct effect (c') of ScentNumber on CoffeePreference_r1 removing CoolWarmRating_1 Temperature_r1 = 0.18 S.E. = 0.09 t = 0 df= 120 with p = 1
## Indirect effect (ab) of ScentNumber on CoffeePreference_r1 through CoolWarmRating_1 Temperature_r1 = 0.03
## Mean bootstrapped indirect effect = 0.03 with standard error = 0.09 Lower CI = -0.12 Upper CI = 0.21
## R = 0.25 R2 = 0.06 F = 2.77 on 3 and 120 DF p-value: 0.0304
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
## Call: mediate(y = CoffeePreference_r1 ~ ScentNumber + (CoolWarmRating_1) +
## (Temperature_r1), data = temp, n.iter = 5000, std = TRUE)
##
## Direct effect estimates (traditional regression) (c')
## CoffeePreference_r1 se t df Prob
## Intercept 0.00 0.09 0.00 120 1.0000
## ScentNumber 0.18 0.11 1.71 120 0.0892
## CoolWarmRating_1 -0.02 0.11 -0.22 120 0.8300
## Temperature_r1 0.15 0.10 1.57 120 0.1190
##
## R = 0.25 R2 = 0.06 F = 2.77 on 3 and 120 DF p-value: 0.0448
##
## Total effect estimates (c)
## CoffeePreference_r1 se t df Prob
## ScentNumber 0.21 0.09 2.4 123 0.0181
##
## 'a' effect estimates
## CoolWarmRating_1 se t df Prob
## Intercept 0.00 0.08 0.00 122 1.00e+00
## ScentNumber 0.55 0.08 7.31 122 3.09e-11
## Temperature_r1 se t df Prob
## Intercept 0.00 0.09 0.0 122 1.00000
## ScentNumber 0.28 0.09 3.2 122 0.00172
##
## 'b' effect estimates
## CoffeePreference_r1 se t df Prob
## CoolWarmRating_1 -0.02 0.11 -0.22 121 0.829
## Temperature_r1 0.15 0.10 1.58 121 0.118
##
## 'ab' effect estimates (through mediators)
## CoffeePreference_r1 boot sd lower upper
## ScentNumber 0.03 0.03 0.09 -0.12 0.21
##
## 'ab' effects estimates for each mediator for CoffeePreference_r1
## CoolWarmRating_1 sd lower upper
## ScentNumber -0.01 0.04 -0.1 0.09
## Temperature_r1 sd lower upper
## ScentNumber 0.04 0.04 -0.03 0.14
##
## Mediation/Moderation Analysis
## Call: mediate(y = CoffeePreference_r1 ~ ScentNumber + (Kimchi_Palmer_total_dich),
## data = temp, n.iter = 5000, std = TRUE)
##
## The DV (Y) was CoffeePreference_r1 . The IV (X) was ScentNumber . The mediating variable(s) = Kimchi_Palmer_total_dich .
##
## Total effect(c) of ScentNumber on CoffeePreference_r1 = 0.21 S.E. = 0.09 t = 2.4 df= 123 with p = 0.018
## Direct effect (c') of ScentNumber on CoffeePreference_r1 removing Kimchi_Palmer_total_dich = 0.19 S.E. = 0.09 t = 0 df= 121 with p = 1
## Indirect effect (ab) of ScentNumber on CoffeePreference_r1 through Kimchi_Palmer_total_dich = 0.02
## Mean bootstrapped indirect effect = 0.02 with standard error = 0.03 Lower CI = -0.03 Upper CI = 0.09
## R = 0.24 R2 = 0.06 F = 3.61 on 2 and 121 DF p-value: 0.0154
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
## Call: mediate(y = CoffeePreference_r1 ~ ScentNumber + (Kimchi_Palmer_total_dich),
## data = temp, n.iter = 5000, std = TRUE)
##
## Direct effect estimates (traditional regression) (c')
## CoffeePreference_r1 se t df Prob
## Intercept 0.00 0.09 0.00 121 1.0000
## ScentNumber 0.19 0.09 2.15 121 0.0336
## Kimchi_Palmer_total_dich 0.11 0.09 1.22 121 0.2230
##
## R = 0.24 R2 = 0.06 F = 3.61 on 2 and 121 DF p-value: 0.0301
##
## Total effect estimates (c)
## CoffeePreference_r1 se t df Prob
## ScentNumber 0.21 0.09 2.4 123 0.0181
##
## 'a' effect estimates
## Kimchi_Palmer_total_dich se t df Prob
## Intercept 0.00 0.09 0.00 122 1.0000
## ScentNumber 0.17 0.09 1.89 122 0.0611
##
## 'b' effect estimates
## CoffeePreference_r1 se t df Prob
## Kimchi_Palmer_total_dich 0.11 0.09 1.23 122 0.221
##
## 'ab' effect estimates (through mediators)
## CoffeePreference_r1 boot sd lower upper
## ScentNumber 0.02 0.02 0.03 -0.03 0.09