setwd("d:/DATA2020/NamKhanh_Q4")
library(readxl)
dulieu <-read_excel("data.xlsx")
head(dulieu)
## # A tibble: 6 x 14
## No Y Stage Year Scope1 Sinner1 Heroin Opium CrackCocaine Meth Hashish
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 0 befo~ 2005 184 223 1.62 2.7 0.108 0 0
## 2 2 0 befo~ 2006 190 252 2.31 3.5 0.192 0 0
## 3 3 0 befo~ 2007 219 257 4.61 1.5 1.21 0 0
## 4 4 0 befo~ 2008 241 312 4.27 1.8 0.0729 16.7 6.12
## 5 5 0 befo~ 2009 250 382 1.26 7.2 0.09 103. 11.2
## 6 6 1 after 2010 273 412 3.51 7.6 4.77 62.1 1.8
## # ... with 3 more variables: Scope2 <dbl>, Sinner2 <dbl>, Victim <dbl>
library(ggplot2)
ggplot(data=dulieu, aes(x=Year)) +
geom_line(data=dulieu,aes(y=Scope1/10),col="red", size=2) +
geom_point(data=dulieu,aes(y=Scope1/10), col="red",size=5) +
geom_line(data=dulieu,aes(y=Sinner1/10),col="blue", size=2) +
geom_point(data=dulieu,aes(y=Sinner1/10), col="blue",size=5) +
geom_line(data=dulieu,aes(y=Heroin),col="green", size=2) +
geom_point(data=dulieu,aes(y=Heroin), col="green",size=5) +
geom_line(data=dulieu,aes(y=Opium),col="yellow", size=2) +
geom_point(data=dulieu,aes(y=Opium), col="yellow",size=5) +
geom_line(data=dulieu,aes(y=CrackCocaine),col="magenta4", size=2) +
geom_point(data=dulieu,aes(y=CrackCocaine), col="magenta4",size=5) +
geom_line(data=dulieu,aes(y=Meth),col="steelblue", size=2) +
geom_point(data=dulieu,aes(y=Meth), col="steelblue",size=5) +
geom_line(data=dulieu,aes(y=Hashish),col="lightcoral", size=2) +
geom_point(data=dulieu,aes(y=Hashish), col="lightcoral",size=5)
ggplot(data=dulieu, aes(x=Year)) +
geom_line(aes(y=Scope2), col="red", size=2) +
geom_point(aes(y=Scope2), col="red", size=5)+
geom_point(aes(x=2006,y=200), col="red", size=5)+
geom_text(aes(x=2006,y=200, label=" So luong vu an"), col="red", hjust=- 0.2)+
geom_line(aes(y=Sinner1/10), col="blue", size=2) +
geom_point(aes(y=Sinner1/10), col="blue", size=5)+
geom_point(aes(x=2006,y=240), col="blue", size=5)+
geom_text(aes(x=2006,y=240, label="Doi tuong tham gia"), col="blue", hjust=- 0.2)+
geom_line(aes(y=Victim ), col="green", size=2) +
geom_point(aes(y=Victim ), col="green", size=5) +
geom_point(aes(x=2006,y=220), col="green", size=5)+
geom_text(aes(x=2006,y=220, label="Nan nhan hang nam"), col="green", hjust=- 0.2)
attach(dulieu)
dulieu2 <-aggregate(dulieu,by=list(Stage), FUN=mean)
## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA
head(dulieu2)
## Group.1 No Y Stage Year Scope1 Sinner1 Heroin Opium CrackCocaine Meth
## 1 after 10.5 1 NA 2014.5 704.2 1104.9 9.303 8.02 45.59388 10.09542
## 2 before 3.0 0 NA 2007.0 216.8 285.2 2.814 3.34 0.33530 23.86000
## Hashish Scope2 Sinner2 Victim
## 1 6.100 8.0 18.9 31.3
## 2 3.456 3.4 8.2 12.2
m <- ggplot(data=dulieu2,aes(x=Group.1 ))
m1 <- m + geom_bar(aes(y=Scope1), stat="identity", col="white", fill="red")
m2 <- m + geom_bar(aes(y=Sinner1), stat="identity", col="white", fill="blue")
m3 <- m + geom_bar(aes(y=Heroin), stat="identity", col="white", fill="green")
m4 <- m + geom_bar(aes(y=Opium), stat="identity", col="white", fill="yellow")
# par(mfrow=c(2,2))
library(gridExtra)
grid.arrange(m1, m2, m3, m4, ncol=2)
m <- ggplot(data=dulieu, aes(Stage))
m1 <- m + geom_boxplot(aes(y=Scope1), fill="red") + geom_jitter(aes(y=Scope1), width = 0.2)
m2 <- m + geom_boxplot(aes(y=Sinner1), fill="blue") + geom_jitter(aes(y=Sinner1), width = 0.2)
m3 <- m + geom_boxplot(aes(y=Heroin), fill="green") + geom_jitter(aes(y=Heroin), width = 0.2)
m4 <- m + geom_boxplot(aes(y=Opium), fill="yellow") + geom_jitter(aes(y=Opium), width = 0.2)
m5 <- m + geom_boxplot(aes(y=CrackCocaine), fill="magenta4") + geom_jitter(aes(y=Opium), width = 0.2)
m6 <- m + geom_boxplot(aes(y=Meth), fill="steelblue") + geom_jitter(aes(y=Opium), width = 0.2)
m7 <- m + geom_boxplot(aes(y=Hashish), fill="lightcoral") + geom_jitter(aes(y=Opium), width = 0.2)
grid.arrange(m1, m2, m3, m4, ncol=2)
grid.arrange(m5, m6, m7, ncol=3)
m <- ggplot(data=dulieu, aes(Stage))
m1 <- m + geom_boxplot(aes(y=Scope2), fill="red") + geom_jitter(aes(y=Scope2), width = 0.2)
m2 <- m + geom_boxplot(aes(y=Sinner2), fill="blue") + geom_jitter(aes(y=Sinner2), width = 0.2)
m3 <- m + geom_boxplot(aes(y=Victim), fill="green") + geom_jitter(aes(y=Victim), width = 0.2)
grid.arrange(m1, m2, m3, ncol=3)
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~ Scope1 + Sinner1 + Heroin + Opium + CrackCocaine + Meth + Hashish + Scope2 + Sinner2 + Victim | Stage , data=dulieu)
after (n=10) |
before (n=5) |
Overall (n=15) |
|
---|---|---|---|
Scope1 | |||
Mean (SD) | 704 (537) | 217 (29.5) | 542 (492) |
Median [Min, Max] | 399 [273, 1620] | 219 [184, 250] | 333 [184, 1620] |
Sinner1 | |||
Mean (SD) | 1100 (977) | 285 (63.0) | 832 (880) |
Median [Min, Max] | 521 [406, 2810] | 257 [223, 382] | 421 [223, 2810] |
Heroin | |||
Mean (SD) | 9.30 (8.46) | 2.81 (1.54) | 7.14 (7.53) |
Median [Min, Max] | 6.01 [2.66, 28.3] | 2.31 [1.26, 4.61] | 4.27 [1.26, 28.3] |
Opium | |||
Mean (SD) | 8.02 (4.85) | 3.34 (2.30) | 6.46 (4.67) |
Median [Min, Max] | 8.75 [0.00, 13.5] | 2.70 [1.50, 7.20] | 7.01 [0.00, 13.5] |
CrackCocaine | |||
Mean (SD) | 45.6 (68.2) | 0.335 (0.493) | 30.5 (59.0) |
Median [Min, Max] | 12.6 [4.77, 228] | 0.108 [0.0729, 1.21] | 11.9 [0.0729, 228] |
Meth | |||
Mean (SD) | 10.1 (18.9) | 23.9 (44.6) | 14.7 (29.0) |
Median [Min, Max] | 4.11 [0.00, 62.1] | 0.00 [0.00, 103] | 1.31 [0.00, 103] |
Hashish | |||
Mean (SD) | 6.10 (6.38) | 3.46 (5.06) | 5.22 (5.92) |
Median [Min, Max] | 4.00 [0.00, 18.2] | 0.00 [0.00, 11.2] | 3.40 [0.00, 18.2] |
Scope2 | |||
Mean (SD) | 8.00 (5.35) | 3.40 (1.52) | 6.47 (4.91) |
Median [Min, Max] | 6.50 [2.00, 17.0] | 3.00 [2.00, 6.00] | 5.00 [2.00, 17.0] |
Sinner2 | |||
Mean (SD) | 18.9 (9.31) | 8.20 (1.30) | 15.3 (9.14) |
Median [Min, Max] | 17.0 [8.00, 34.0] | 9.00 [6.00, 9.00] | 11.0 [6.00, 34.0] |
Victim | |||
Mean (SD) | 31.3 (20.7) | 12.2 (3.96) | 24.9 (19.1) |
Median [Min, Max] | 26.5 [9.00, 71.0] | 11.0 [9.00, 19.0] | 19.0 [9.00, 71.0] |
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:gridExtra':
##
## combine
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readxl)
library(ggalt)
## Registered S3 methods overwritten by 'ggalt':
## method from
## grid.draw.absoluteGrob ggplot2
## grobHeight.absoluteGrob ggplot2
## grobWidth.absoluteGrob ggplot2
## grobX.absoluteGrob ggplot2
## grobY.absoluteGrob ggplot2
library(base)
library(forcats)
dulieu2<-read_excel("data3.xlsx")
attach(dulieu2)
## The following object is masked from dulieu:
##
## No
#dulieu3 <-dulieu2[order(-Diff),]
#dulieu2 %>% arrange(Diff) %>%
dulieu2$Standard <- factor(dulieu2$Standard, levels = dulieu2$Standard[order(dulieu2$Diff)])
ggplot() +
geom_dumbbell(data=dulieu2 ,aes(x=Score1, xend=Score2, y=factor(Standard)),color="#32a8a8",size=1.75,colour_x = "#bf244b", colour_xend = "#1a2d8f", size_x = 4,size_xend = 5)
attach(dulieu)
## The following object is masked from dulieu2:
##
## No
## The following objects are masked from dulieu (pos = 9):
##
## CrackCocaine, Hashish, Heroin, Meth, No, Opium, Scope1, Scope2,
## Sinner1, Sinner2, Stage, Victim, Y, Year
wilcox.test(Scope1~Stage)
##
## Wilcoxon rank sum test
##
## data: Scope1 by Stage
## W = 50, p-value = 0.000666
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Sinner1~Stage)
##
## Wilcoxon rank sum test
##
## data: Sinner1 by Stage
## W = 50, p-value = 0.000666
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Heroin~Stage)
##
## Wilcoxon rank sum test
##
## data: Heroin by Stage
## W = 42, p-value = 0.03996
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Opium~Stage)
## Warning in wilcox.test.default(x = c(7.6, 9.89, 10.12, 6.98, 7.01, 0, 13.5, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Opium by Stage
## W = 38, p-value = 0.1251
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(CrackCocaine~Stage)
##
## Wilcoxon rank sum test
##
## data: CrackCocaine by Stage
## W = 50, p-value = 0.000666
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Meth~Stage)
## Warning in wilcox.test.default(x = c(62.12, 11, 6.91, 9.01, 10.6, 1.31422, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Meth by Stage
## W = 25, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Hashish~Stage)
## Warning in wilcox.test.default(x = c(1.8, 0, 0, 12.7, 18.2, 1.7, 4.6, 3.4, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Hashish by Stage
## W = 33, p-value = 0.3496
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Scope2~Stage)
## Warning in wilcox.test.default(x = c(6, 2, 5, 3, 3, 7, 10, 11, 16, 17), : cannot
## compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Scope2 by Stage
## W = 39, p-value = 0.09163
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Sinner2~Stage)
## Warning in wilcox.test.default(x = c(15, 8, 16, 11, 9, 18, 26, 19, 33, 34:
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Sinner2 by Stage
## W = 45, p-value = 0.01586
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Victim~Stage)
## Warning in wilcox.test.default(x = c(15, 9, 31, 26, 11, 23, 27, 38, 62, : cannot
## compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Victim by Stage
## W = 42, p-value = 0.04292
## alternative hypothesis: true location shift is not equal to 0
library(dplyr)
dulieu<-read_excel("data3.xlsx")
dulieu1 <-dulieu %>% arrange(Diff) %>% mutate(Moi=factor(Standard,levels=Standard))
ggplot() +
geom_dumbbell(data=dulieu1 ,aes(x=Score1, xend=Score2, y=Moi),color="red",size=1.75,colour_x = "#bf244b", colour_xend = "#1a2d8f", size_x = 4,size_xend = 5) +
geom_text(data=dulieu1 %>% filter(Moi=="Sinner1"),aes(x=Score1,y=Moi, label="Before"), vjust=-1) +
geom_text(data=dulieu1 %>% filter(Moi=="Sinner1"),aes(x=Score2,y=Moi, label="After"),vjust=-1) +
geom_text(data=dulieu1, aes(x=Score1, y=Moi, label=round(Score1,1)), hjust=1.5) +
geom_text(data=dulieu1, aes(x=Score2, y=Moi, label=round(Score2,1)), hjust= -0.8) +
scale_y_discrete(expand = c(0.12,0)) +
scale_x_discrete(expand = c(0.2,0))
dulieu <- read_excel("data2.xlsx")
ggplot() +
geom_bar(data=dulieu , aes(x=Standard, y=Score, fill=Stage), stat = "identity", col="white") +
geom_text(data=dulieu %>% filter(Score <0), aes(x=Standard, y=Score, label=abs(Score)),hjust=1) +
geom_text(data=dulieu %>% filter(Score >0), aes(x=Standard, y=Score, label=Score),hjust=-0.5) +
scale_y_discrete(expand = c(0.2,0)) +
coord_flip()