Loading the dataset

data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)
items <- c("MLQ1" ,"MLQ4", "MLQ5", "MLQ6", "MLQ9")
scaleKey <- c(1, 1, 1,1,-1)
data.test4$meanmlq  <- scoreItems(scaleKey, items=data.test4[,items], delete=FALSE)$score

library(reshape2); library(car); library(Amelia);library(mitools);library(nlme);library(predictmeans)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
## 
## Loading required package: Rcpp
## ## 
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.3, built: 2014-11-14)
## ## Copyright (C) 2005-2015 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ## 
## Loading required package: lme4
## Loading required package: Matrix
## 
## Attaching package: 'lme4'
## 
## The following object is masked from 'package:nlme':
## 
##     lmList
data <- data.test4[,c("ID", "GROUP", "wave", "meanmlq")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanmlq")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )

Create new data set with ID Group baseline meanmlq and wave so that we have Baseline, time 1 and 2 to compare to

data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanmlq", "WAVE")

Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).

data2[which(data2$GROUP ==2), "GROUP"] <- 1

Make GROUP and ID a factor

data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)

Imputing missing data

MI <- amelia(data2, 50, idvars = c("ID"), ords = "GROUP")
## -- Imputation 1 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 2 --
## 
##   1  2  3  4  5  6
## 
## -- Imputation 3 --
## 
##   1  2  3  4  5  6  7  8  9 10
## 
## -- Imputation 4 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 5 --
## 
##   1  2  3  4  5  6  7  8  9 10
## 
## -- Imputation 6 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 7 --
## 
##   1  2  3  4  5  6  7  8
## 
## -- Imputation 8 --
## 
##   1  2  3  4  5  6  7  8  9 10 11 12 13
## 
## -- Imputation 9 --
## 
##   1  2  3  4  5  6  7  8  9 10
## 
## -- Imputation 10 --
## 
##   1  2  3  4  5  6  7  8  9 10 11
## 
## -- Imputation 11 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 12 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 13 --
## 
##   1  2  3  4  5  6  7  8  9 10
## 
## -- Imputation 14 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 15 --
## 
##   1  2  3  4  5  6
## 
## -- Imputation 16 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 17 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 18 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 19 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 20 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 21 --
## 
##   1  2  3  4  5  6  7  8  9 10 11 12 13
## 
## -- Imputation 22 --
## 
##   1  2  3  4  5  6  7  8  9 10 11
## 
## -- Imputation 23 --
## 
##   1  2  3  4  5  6  7  8
## 
## -- Imputation 24 --
## 
##   1  2  3  4
## 
## -- Imputation 25 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 26 --
## 
##   1  2  3  4  5  6  7  8
## 
## -- Imputation 27 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 28 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 29 --
## 
##   1  2  3  4  5  6  7  8  9 10 11
## 
## -- Imputation 30 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 31 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 32 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 33 --
## 
##   1  2  3  4  5  6  7  8
## 
## -- Imputation 34 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 35 --
## 
##   1  2  3  4  5  6  7  8  9 10
## 
## -- Imputation 36 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 37 --
## 
##   1  2  3  4  5  6  7  8  9 10
## 
## -- Imputation 38 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 39 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 40 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 41 --
## 
##   1  2  3  4  5
## 
## -- Imputation 42 --
## 
##   1  2  3  4  5  6
## 
## -- Imputation 43 --
## 
##   1  2  3  4  5  6  7  8  9 10 11 12
## 
## -- Imputation 44 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 45 --
## 
##   1  2  3  4  5  6  7
## 
## -- Imputation 46 --
## 
##   1  2  3  4  5  6  7  8  9 10 11
## 
## -- Imputation 47 --
## 
##   1  2  3  4  5  6  7  8  9
## 
## -- Imputation 48 --
## 
##   1  2  3  4  5  6  7  8
## 
## -- Imputation 49 --
## 
##   1  2  3  4  5
## 
## -- Imputation 50 --
## 
##   1  2  3  4  5  6  7  8  9 10 11

Creating new dataset with missing data imputed

data(MI$imputations)
## Warning in data(MI$imputations): data set 'MI$imputations' not found
allimplogreg<-lapply(MI$imputations,function(X) {lme(meanmlq ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = X, method = "ML", na.action = "na.omit")})
betas<-MIextract(allimplogreg, fun=fixef)
vars<-MIextract(allimplogreg, fun=vcov)
summary(MIcombine(betas,vars))
## Multiple imputation results:
##       MIcombine.default(betas, vars)
##                 results         se      (lower    upper) missInfo
## (Intercept)  1.72370499 0.36738733  1.00175663 2.4456534     33 %
## GROUP1       0.78712436 0.37345276  0.05344626 1.5208024     31 %
## WAVE         0.10143086 0.16828571 -0.22928928 0.4321510     33 %
## BASELINE     0.65552817 0.05873157  0.53978496 0.7712714     47 %
## GROUP1:WAVE -0.02969385 0.23520186 -0.49196776 0.4325801     34 %
library("Zelig")
## Loading required package: boot
## 
## Attaching package: 'boot'
## 
## The following object is masked from 'package:car':
## 
##     logit
## 
## The following object is masked from 'package:psych':
## 
##     logit
## 
## Loading required package: MASS
## Loading required package: sandwich
## ZELIG (Versions 4.2-1, built: 2013-09-12)
## 
## +----------------------------------------------------------------+
## |  Please refer to http://gking.harvard.edu/zelig for full       |
## |  documentation or help.zelig() for help with commands and      |
## |  models support by Zelig.                                      |
## |                                                                |
## |  Zelig project citations:                                      |
## |    Kosuke Imai, Gary King, and Olivia Lau.  (2009).            |
## |    ``Zelig: Everyone's Statistical Software,''                 |
## |    http://gking.harvard.edu/zelig                              |
## |   and                                                          |
## |    Kosuke Imai, Gary King, and Olivia Lau. (2008).             |
## |    ``Toward A Common Framework for Statistical Analysis        |
## |    and Development,'' Journal of Computational and             |
## |    Graphical Statistics, Vol. 17, No. 4 (December)             |
## |    pp. 892-913.                                                |
## |                                                                |
## |   To cite individual Zelig models, please use the citation     |
## |   format printed with each model run and in the documentation. |
## +----------------------------------------------------------------+
## 
## 
## 
## Attaching package: 'Zelig'
## 
## The following objects are masked from 'package:psych':
## 
##     alpha, describe, sim
## 
## The following object is masked from 'package:utils':
## 
##     cite
zelig.fit <- zelig(meanmlq ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = MI$imputations,  model = "ls", cite = FALSE)
summary(zelig.fit)
## 
##   Model: ls
##   Number of multiply imputed data sets: 50 
## 
## Combined results:
## 
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
## 
## Coefficients:
##                   Value Std. Error     t-stat      p-value
## (Intercept)  1.71638966 0.37376699  4.5921382 5.531921e-06
## GROUP1       0.78744990 0.40103417  1.9635481 4.998745e-02
## WAVE         0.10143086 0.18347232  0.5528401 5.805665e-01
## BASELINE     0.65706711 0.05629104 11.6726773 3.497378e-24
## GROUP1:WAVE -0.02969923 0.25624800 -0.1159003 9.077695e-01
## 
## For combined results from datasets i to j, use summary(x, subset = i:j).
## For separate results, use print(summary(x), subset = i:j).

Describe the meanmlq variable by the GROUP variable

describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
##          vars  n mean   sd median trimmed  mad min max range  skew
## BASELINE    1 86 4.75 1.27    4.8    4.82 1.19 1.4   7   5.6 -0.43
## meanmlq     2 59 5.17 1.15    5.4    5.22 1.19 2.4   7   4.6 -0.45
##          kurtosis   se
## BASELINE    -0.20 0.14
## meanmlq     -0.38 0.15
## -------------------------------------------------------- 
## group: 1
##          vars  n mean   sd median trimmed  mad min max range  skew
## BASELINE    1 88 4.50 1.47    4.4    4.50 1.63 1.8   7   5.2  0.05
## meanmlq     2 54 5.76 1.03    6.0    5.84 0.89 3.8   7   3.2 -0.61
##          kurtosis   se
## BASELINE    -1.05 0.16
## meanmlq     -0.82 0.14

Create a plot that visualizes meanmlq variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
library(influence.ME)
## 
## Attaching package: 'influence.ME'
## 
## The following object is masked from 'package:stats':
## 
##     influence

Take a look at the residuals

residual <- lm(meanmlq ~ BASELINE, data=data2)$residual

Plot the residuals to see that they are random

plot(density(residual))# A density plot

qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)

Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.

data2$residual <- NA
sel1 <- which(!is.na(data2$meanmlq)) 
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanmlq, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).

Plot of the difference between intervention and control groups.

qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).

Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanmlq and the Residuals

# Load the nlme package
library(nlme)
with(data2, boxplot(meanmlq ~ WAVE + GROUP))

with(data2, boxplot(residual ~ WAVE + GROUP))
Linear Mixed-Effects Model

Comparing Basline to Wave 2 and 3 by Group.

fullModel <- lme(meanmlq ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")

Cooks Distence

CookD(fullModel)

Plot Cook’s distance:

plot(fullModel, which="cook")
Results

Explanation of significance:

We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.

summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
##  Data: data2 
##        AIC      BIC    logLik
##   240.2404 259.0798 -113.1202
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)  Residual
## StdDev:   0.5321759 0.4951252
## 
## Fixed effects: meanmlq ~ GROUP * WAVE + BASELINE 
##                  Value Std.Error DF   t-value p-value
## (Intercept)  1.6901896 0.3918256 66  4.313628  0.0001
## GROUP1       0.8795864 0.3380075 66  2.602269  0.0114
## WAVE         0.0773449 0.1454611 38  0.531722  0.5980
## BASELINE     0.6589066 0.0654276 66 10.070773  0.0000
## GROUP1:WAVE -0.0842401 0.2125839 38 -0.396268  0.6941
##  Correlation: 
##             (Intr) GROUP1 WAVE   BASELI
## GROUP1      -0.426                     
## WAVE        -0.484  0.590              
## BASELINE    -0.811  0.037 -0.032       
## GROUP1:WAVE  0.333 -0.869 -0.684  0.021
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.4086341 -0.4440518  0.1101479  0.3570213  2.0486129 
## 
## Number of Observations: 109
## Number of Groups: 69
Table with P-value

|             |       Value|  Std.Error|  DF|     t-value|    p-value|
|:------------|-----------:|----------:|---:|-----------:|----------:|
|(Intercept)  |   1.6901896|  0.3918256|  66|   4.3136276|  0.0000549|
|GROUP1       |   0.8795864|  0.3380075|  66|   2.6022691|  0.0114235|
|WAVE         |   0.0773449|  0.1454611|  38|   0.5317219|  0.5980136|
|BASELINE     |   0.6589066|  0.0654276|  66|  10.0707734|  0.0000000|
|GROUP1:WAVE  |  -0.0842401|  0.2125839|  38|  -0.3962676|  0.6941241|

Table with confidence intervals

est. lower upper
(Intercept) 1.6901896 0.9260380 2.4543411
GROUP1 0.8795864 0.2203927 1.5387801
WAVE 0.0773449 -0.2102926 0.3649823
BASELINE 0.6589066 0.5313075 0.7865058
GROUP1:WAVE -0.0842401 -0.5046074 0.3361272