ggplot(diamonds, aes(cut,price)) + geom_boxplot()
ggplot(diamonds, aes(color,price)) + geom_boxplot()
ggplot(diamonds, aes(clarity,price)) + geom_boxplot()
ggplot(diamonds, aes(carat, price)) +
geom_hex(bins=50)
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
ggplot(diamonds2, aes(lcarat, lprice)) +
geom_hex(bins=50)
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2, na.action = na.warn)
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lcarat = log2(carat)) %>%
add_predictions(mod_diamond, "lprice") %>%
mutate(price = 2 ^ lprice)
ggplot(diamonds2, aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "green", size = 1)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "lresid")
ggplot(diamonds2, aes(lcarat, lresid)) +
geom_hex(bins = 50)
ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()
mod_diamond2 <- lm(
lprice ~ lcarat + color + cut + clarity, diamonds2, na.action = na.warn
)
grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
## cut lcarat color clarity pred
## <ord> <dbl> <chr> <chr> <dbl>
## 1 Fair -0.515 G VS2 11.2
## 2 Good -0.515 G VS2 11.3
## 3 Very Good -0.515 G VS2 11.4
## 4 Premium -0.515 G VS2 11.4
## 5 Ideal -0.515 G VS2 11.4
ggplot(grid, aes(cut, pred)) +
geom_point()
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "lresid2")
ggplot(diamonds2, aes(lcarat, lresid2)) +
geom_hex(bins = 50)
diamonds2 %>%
filter(abs(lresid2) > 1) %>%
add_predictions(mod_diamond2) %>%
mutate(pred = round(2^pred)) %>%
select(price, pred, carat:table, x:z) %>%
arrange(price)
## # A tibble: 16 x 11
## price pred carat cut color clarity depth table x y z
## <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1013 264 0.25 Fair F SI2 54.4 64 4.3 4.23 2.32
## 2 1186 284 0.25 Premium G SI2 59 60 5.33 5.28 3.12
## 3 1186 284 0.25 Premium G SI2 58.8 60 5.33 5.28 3.12
## 4 1262 2644 1.03 Fair E I1 78.2 54 5.72 5.59 4.42
## 5 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 6 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 7 1715 576 0.32 Fair F VS2 59.6 60 4.42 4.34 2.61
## 8 1776 412 0.290 Fair F SI1 55.8 60 4.48 4.41 2.48
## 9 2160 314 0.34 Fair F I1 55.8 62 4.72 4.6 2.6
## 10 2366 774 0.3 Very Good D VVS2 60.6 58 4.33 4.35 2.63
## 11 3360 1373 0.51 Premium F SI1 62.7 62 5.09 4.96 3.15
## 12 3807 1540 0.61 Good F SI2 62.5 65 5.36 5.29 3.33
## 13 3920 1705 0.51 Fair F VVS2 65.4 60 4.98 4.9 3.23
## 14 4368 1705 0.51 Fair F VVS2 60.7 66 5.21 5.11 3.13
## 15 10011 4048 1.01 Fair D SI2 64.6 58 6.25 6.2 4.02
## 16 10470 23622 2.46 Premium E SI2 59.7 59 8.82 8.76 5.25
In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?
# Use this chunk to answer question 1
# These vertical strips represent some popular carat weight of the Diamond. Brighter color means higher number of occurance in the graph.
If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?
# Use this chunk to answer question 2
# The relationship means price= exp(a_0)*carat^(a_1). Which means the relationship between carat and price is not linear. If x increases by n, they y increases by n^a1.
Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?
# Use this chunk to place your code for extracting the high and low residuals and answer question 3
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond,'lresid')
summary(diamonds2$lresid)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.964068 -0.245488 -0.008442 0.000000 0.239301 1.934855
diamonds3 <- diamonds2 %>% filter(lresid > quantile(lresid)[[3]] | lresid < quantile(lresid)[[1]] )
table(diamonds3$cut)
##
## Fair Good Very Good Premium Ideal
## 317 1651 5515 6477 12946
table(diamonds3$clarity)
##
## I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF
## 1 836 4321 7340 5304 4208 3225 1671
diamonds3 %>%
ggplot(aes(clarity,price))+
geom_boxplot()+
facet_grid(~cut)
#There must be some error happen since the higher the quality and clarity, the lower the price fo the diamond. Or it could be possible that most of the high clarity diamonds are the small ones since we only filtered extra large diamond. If we filter >1.5 Carat diamond, the graph will be different and make more sense.
diamonds2 <- diamonds %>%
filter(carat >= 1.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond,'lresid')
diamonds3 <- diamonds2 %>% filter(lresid > quantile(lresid)[[3]] | lresid < quantile(lresid)[[1]] )
diamonds3 %>%
ggplot(aes(clarity,price))+
geom_boxplot()+
facet_grid(~cut)
Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?
# Use this chunk to place your code for assessing how well the model predicts diamond prices and answer question 4
diamonds2 <- diamonds2 %>%
add_predictions(mod_diamond) %>%
mutate(pred = round(2 ^ pred),
err = pred - price)
diamonds2 %>%
add_residuals(mod_diamond) %>%
mutate(resid = 2 ^ abs(resid)) %>%
ggplot(aes(resid)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Based on the plots of the residuals, this is an average model. It does well in predicting the models of base prices not so much for greater prices. I would not base a buying decision on the model though