DATA FRAMES

  1. There should be a default dataset in R called iris. Use the head function to inspect the first few lines of the data frame and use class to check that iris is in fact a data frame.
head.matrix(iris)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
class(iris)
## [1] "data.frame"
  1. What are the column names of the iris data frame? How many rows are there? (dim() and nrow())
dim(iris)
## [1] 150   5
nrow(iris)
## [1] 150
  1. Extract the species column using the $ operator?
iris$Species
##   [1] setosa     setosa     setosa     setosa     setosa     setosa    
##   [7] setosa     setosa     setosa     setosa     setosa     setosa    
##  [13] setosa     setosa     setosa     setosa     setosa     setosa    
##  [19] setosa     setosa     setosa     setosa     setosa     setosa    
##  [25] setosa     setosa     setosa     setosa     setosa     setosa    
##  [31] setosa     setosa     setosa     setosa     setosa     setosa    
##  [37] setosa     setosa     setosa     setosa     setosa     setosa    
##  [43] setosa     setosa     setosa     setosa     setosa     setosa    
##  [49] setosa     setosa     versicolor versicolor versicolor versicolor
##  [55] versicolor versicolor versicolor versicolor versicolor versicolor
##  [61] versicolor versicolor versicolor versicolor versicolor versicolor
##  [67] versicolor versicolor versicolor versicolor versicolor versicolor
##  [73] versicolor versicolor versicolor versicolor versicolor versicolor
##  [79] versicolor versicolor versicolor versicolor versicolor versicolor
##  [85] versicolor versicolor versicolor versicolor versicolor versicolor
##  [91] versicolor versicolor versicolor versicolor versicolor versicolor
##  [97] versicolor versicolor versicolor versicolor virginica  virginica 
## [103] virginica  virginica  virginica  virginica  virginica  virginica 
## [109] virginica  virginica  virginica  virginica  virginica  virginica 
## [115] virginica  virginica  virginica  virginica  virginica  virginica 
## [121] virginica  virginica  virginica  virginica  virginica  virginica 
## [127] virginica  virginica  virginica  virginica  virginica  virginica 
## [133] virginica  virginica  virginica  virginica  virginica  virginica 
## [139] virginica  virginica  virginica  virginica  virginica  virginica 
## [145] virginica  virginica  virginica  virginica  virginica  virginica 
## Levels: setosa versicolor virginica
  1. Extract rows 1 to 10 from the iris data frame.
iris[1:10,]
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
  1. Make a new data frame called Setosa which only contains rows that belongs to the Setosa species.
Setosa<-subset(iris,Species=="setosa")
Setosa
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa

FACTORS

  1. The Species column is a factor. Check that this is true.
class(iris$Species) == 'factor'
## [1] TRUE
  1. How many levels are there in Species? (levels())
levels(iris$Species)
## [1] "setosa"     "versicolor" "virginica"

VECTORS

  1. Extract the Petal.lengths into a new vector called petallengths.
petal_lengths<- iris$Petal.Length
  1. How many elements are there in petal_lengths? (length)
length(petal_lengths)
## [1] 150
  1. Extract the 5th to the 10th element from petal_lengths.
petal_lengths[5:10]
## [1] 1.4 1.7 1.4 1.5 1.4 1.5
  1. Add one more element to petal_lengths using c().
c(petal_lengths,100)
##   [1]   1.4   1.4   1.3   1.5   1.4   1.7   1.4   1.5   1.4   1.5   1.5
##  [12]   1.6   1.4   1.1   1.2   1.5   1.3   1.4   1.7   1.5   1.7   1.5
##  [23]   1.0   1.7   1.9   1.6   1.6   1.5   1.4   1.6   1.6   1.5   1.5
##  [34]   1.4   1.5   1.2   1.3   1.4   1.3   1.5   1.3   1.3   1.3   1.6
##  [45]   1.9   1.4   1.6   1.4   1.5   1.4   4.7   4.5   4.9   4.0   4.6
##  [56]   4.5   4.7   3.3   4.6   3.9   3.5   4.2   4.0   4.7   3.6   4.4
##  [67]   4.5   4.1   4.5   3.9   4.8   4.0   4.9   4.7   4.3   4.4   4.8
##  [78]   5.0   4.5   3.5   3.8   3.7   3.9   5.1   4.5   4.5   4.7   4.4
##  [89]   4.1   4.0   4.4   4.6   4.0   3.3   4.2   4.2   4.2   4.3   3.0
## [100]   4.1   6.0   5.1   5.9   5.6   5.8   6.6   4.5   6.3   5.8   6.1
## [111]   5.1   5.3   5.5   5.0   5.1   5.3   5.5   6.7   6.9   5.0   5.7
## [122]   4.9   6.7   4.9   5.7   6.0   4.8   4.9   5.6   5.8   6.1   6.4
## [133]   5.6   5.1   5.6   6.1   5.6   5.5   4.8   5.4   5.6   5.1   5.1
## [144]   5.9   5.7   5.2   5.0   5.2   5.4   5.1 100.0

Matrix

  1. Can you force the iris data frame to be a Matrix? (as.matrix(iris)). Check that the elements have been forced into the character type.
as.matrix(iris)
##        Sepal.Length Sepal.Width Petal.Length Petal.Width Species     
##   [1,] "5.1"        "3.5"       "1.4"        "0.2"       "setosa"    
##   [2,] "4.9"        "3.0"       "1.4"        "0.2"       "setosa"    
##   [3,] "4.7"        "3.2"       "1.3"        "0.2"       "setosa"    
##   [4,] "4.6"        "3.1"       "1.5"        "0.2"       "setosa"    
##   [5,] "5.0"        "3.6"       "1.4"        "0.2"       "setosa"    
##   [6,] "5.4"        "3.9"       "1.7"        "0.4"       "setosa"    
##   [7,] "4.6"        "3.4"       "1.4"        "0.3"       "setosa"    
##   [8,] "5.0"        "3.4"       "1.5"        "0.2"       "setosa"    
##   [9,] "4.4"        "2.9"       "1.4"        "0.2"       "setosa"    
##  [10,] "4.9"        "3.1"       "1.5"        "0.1"       "setosa"    
##  [11,] "5.4"        "3.7"       "1.5"        "0.2"       "setosa"    
##  [12,] "4.8"        "3.4"       "1.6"        "0.2"       "setosa"    
##  [13,] "4.8"        "3.0"       "1.4"        "0.1"       "setosa"    
##  [14,] "4.3"        "3.0"       "1.1"        "0.1"       "setosa"    
##  [15,] "5.8"        "4.0"       "1.2"        "0.2"       "setosa"    
##  [16,] "5.7"        "4.4"       "1.5"        "0.4"       "setosa"    
##  [17,] "5.4"        "3.9"       "1.3"        "0.4"       "setosa"    
##  [18,] "5.1"        "3.5"       "1.4"        "0.3"       "setosa"    
##  [19,] "5.7"        "3.8"       "1.7"        "0.3"       "setosa"    
##  [20,] "5.1"        "3.8"       "1.5"        "0.3"       "setosa"    
##  [21,] "5.4"        "3.4"       "1.7"        "0.2"       "setosa"    
##  [22,] "5.1"        "3.7"       "1.5"        "0.4"       "setosa"    
##  [23,] "4.6"        "3.6"       "1.0"        "0.2"       "setosa"    
##  [24,] "5.1"        "3.3"       "1.7"        "0.5"       "setosa"    
##  [25,] "4.8"        "3.4"       "1.9"        "0.2"       "setosa"    
##  [26,] "5.0"        "3.0"       "1.6"        "0.2"       "setosa"    
##  [27,] "5.0"        "3.4"       "1.6"        "0.4"       "setosa"    
##  [28,] "5.2"        "3.5"       "1.5"        "0.2"       "setosa"    
##  [29,] "5.2"        "3.4"       "1.4"        "0.2"       "setosa"    
##  [30,] "4.7"        "3.2"       "1.6"        "0.2"       "setosa"    
##  [31,] "4.8"        "3.1"       "1.6"        "0.2"       "setosa"    
##  [32,] "5.4"        "3.4"       "1.5"        "0.4"       "setosa"    
##  [33,] "5.2"        "4.1"       "1.5"        "0.1"       "setosa"    
##  [34,] "5.5"        "4.2"       "1.4"        "0.2"       "setosa"    
##  [35,] "4.9"        "3.1"       "1.5"        "0.2"       "setosa"    
##  [36,] "5.0"        "3.2"       "1.2"        "0.2"       "setosa"    
##  [37,] "5.5"        "3.5"       "1.3"        "0.2"       "setosa"    
##  [38,] "4.9"        "3.6"       "1.4"        "0.1"       "setosa"    
##  [39,] "4.4"        "3.0"       "1.3"        "0.2"       "setosa"    
##  [40,] "5.1"        "3.4"       "1.5"        "0.2"       "setosa"    
##  [41,] "5.0"        "3.5"       "1.3"        "0.3"       "setosa"    
##  [42,] "4.5"        "2.3"       "1.3"        "0.3"       "setosa"    
##  [43,] "4.4"        "3.2"       "1.3"        "0.2"       "setosa"    
##  [44,] "5.0"        "3.5"       "1.6"        "0.6"       "setosa"    
##  [45,] "5.1"        "3.8"       "1.9"        "0.4"       "setosa"    
##  [46,] "4.8"        "3.0"       "1.4"        "0.3"       "setosa"    
##  [47,] "5.1"        "3.8"       "1.6"        "0.2"       "setosa"    
##  [48,] "4.6"        "3.2"       "1.4"        "0.2"       "setosa"    
##  [49,] "5.3"        "3.7"       "1.5"        "0.2"       "setosa"    
##  [50,] "5.0"        "3.3"       "1.4"        "0.2"       "setosa"    
##  [51,] "7.0"        "3.2"       "4.7"        "1.4"       "versicolor"
##  [52,] "6.4"        "3.2"       "4.5"        "1.5"       "versicolor"
##  [53,] "6.9"        "3.1"       "4.9"        "1.5"       "versicolor"
##  [54,] "5.5"        "2.3"       "4.0"        "1.3"       "versicolor"
##  [55,] "6.5"        "2.8"       "4.6"        "1.5"       "versicolor"
##  [56,] "5.7"        "2.8"       "4.5"        "1.3"       "versicolor"
##  [57,] "6.3"        "3.3"       "4.7"        "1.6"       "versicolor"
##  [58,] "4.9"        "2.4"       "3.3"        "1.0"       "versicolor"
##  [59,] "6.6"        "2.9"       "4.6"        "1.3"       "versicolor"
##  [60,] "5.2"        "2.7"       "3.9"        "1.4"       "versicolor"
##  [61,] "5.0"        "2.0"       "3.5"        "1.0"       "versicolor"
##  [62,] "5.9"        "3.0"       "4.2"        "1.5"       "versicolor"
##  [63,] "6.0"        "2.2"       "4.0"        "1.0"       "versicolor"
##  [64,] "6.1"        "2.9"       "4.7"        "1.4"       "versicolor"
##  [65,] "5.6"        "2.9"       "3.6"        "1.3"       "versicolor"
##  [66,] "6.7"        "3.1"       "4.4"        "1.4"       "versicolor"
##  [67,] "5.6"        "3.0"       "4.5"        "1.5"       "versicolor"
##  [68,] "5.8"        "2.7"       "4.1"        "1.0"       "versicolor"
##  [69,] "6.2"        "2.2"       "4.5"        "1.5"       "versicolor"
##  [70,] "5.6"        "2.5"       "3.9"        "1.1"       "versicolor"
##  [71,] "5.9"        "3.2"       "4.8"        "1.8"       "versicolor"
##  [72,] "6.1"        "2.8"       "4.0"        "1.3"       "versicolor"
##  [73,] "6.3"        "2.5"       "4.9"        "1.5"       "versicolor"
##  [74,] "6.1"        "2.8"       "4.7"        "1.2"       "versicolor"
##  [75,] "6.4"        "2.9"       "4.3"        "1.3"       "versicolor"
##  [76,] "6.6"        "3.0"       "4.4"        "1.4"       "versicolor"
##  [77,] "6.8"        "2.8"       "4.8"        "1.4"       "versicolor"
##  [78,] "6.7"        "3.0"       "5.0"        "1.7"       "versicolor"
##  [79,] "6.0"        "2.9"       "4.5"        "1.5"       "versicolor"
##  [80,] "5.7"        "2.6"       "3.5"        "1.0"       "versicolor"
##  [81,] "5.5"        "2.4"       "3.8"        "1.1"       "versicolor"
##  [82,] "5.5"        "2.4"       "3.7"        "1.0"       "versicolor"
##  [83,] "5.8"        "2.7"       "3.9"        "1.2"       "versicolor"
##  [84,] "6.0"        "2.7"       "5.1"        "1.6"       "versicolor"
##  [85,] "5.4"        "3.0"       "4.5"        "1.5"       "versicolor"
##  [86,] "6.0"        "3.4"       "4.5"        "1.6"       "versicolor"
##  [87,] "6.7"        "3.1"       "4.7"        "1.5"       "versicolor"
##  [88,] "6.3"        "2.3"       "4.4"        "1.3"       "versicolor"
##  [89,] "5.6"        "3.0"       "4.1"        "1.3"       "versicolor"
##  [90,] "5.5"        "2.5"       "4.0"        "1.3"       "versicolor"
##  [91,] "5.5"        "2.6"       "4.4"        "1.2"       "versicolor"
##  [92,] "6.1"        "3.0"       "4.6"        "1.4"       "versicolor"
##  [93,] "5.8"        "2.6"       "4.0"        "1.2"       "versicolor"
##  [94,] "5.0"        "2.3"       "3.3"        "1.0"       "versicolor"
##  [95,] "5.6"        "2.7"       "4.2"        "1.3"       "versicolor"
##  [96,] "5.7"        "3.0"       "4.2"        "1.2"       "versicolor"
##  [97,] "5.7"        "2.9"       "4.2"        "1.3"       "versicolor"
##  [98,] "6.2"        "2.9"       "4.3"        "1.3"       "versicolor"
##  [99,] "5.1"        "2.5"       "3.0"        "1.1"       "versicolor"
## [100,] "5.7"        "2.8"       "4.1"        "1.3"       "versicolor"
## [101,] "6.3"        "3.3"       "6.0"        "2.5"       "virginica" 
## [102,] "5.8"        "2.7"       "5.1"        "1.9"       "virginica" 
## [103,] "7.1"        "3.0"       "5.9"        "2.1"       "virginica" 
## [104,] "6.3"        "2.9"       "5.6"        "1.8"       "virginica" 
## [105,] "6.5"        "3.0"       "5.8"        "2.2"       "virginica" 
## [106,] "7.6"        "3.0"       "6.6"        "2.1"       "virginica" 
## [107,] "4.9"        "2.5"       "4.5"        "1.7"       "virginica" 
## [108,] "7.3"        "2.9"       "6.3"        "1.8"       "virginica" 
## [109,] "6.7"        "2.5"       "5.8"        "1.8"       "virginica" 
## [110,] "7.2"        "3.6"       "6.1"        "2.5"       "virginica" 
## [111,] "6.5"        "3.2"       "5.1"        "2.0"       "virginica" 
## [112,] "6.4"        "2.7"       "5.3"        "1.9"       "virginica" 
## [113,] "6.8"        "3.0"       "5.5"        "2.1"       "virginica" 
## [114,] "5.7"        "2.5"       "5.0"        "2.0"       "virginica" 
## [115,] "5.8"        "2.8"       "5.1"        "2.4"       "virginica" 
## [116,] "6.4"        "3.2"       "5.3"        "2.3"       "virginica" 
## [117,] "6.5"        "3.0"       "5.5"        "1.8"       "virginica" 
## [118,] "7.7"        "3.8"       "6.7"        "2.2"       "virginica" 
## [119,] "7.7"        "2.6"       "6.9"        "2.3"       "virginica" 
## [120,] "6.0"        "2.2"       "5.0"        "1.5"       "virginica" 
## [121,] "6.9"        "3.2"       "5.7"        "2.3"       "virginica" 
## [122,] "5.6"        "2.8"       "4.9"        "2.0"       "virginica" 
## [123,] "7.7"        "2.8"       "6.7"        "2.0"       "virginica" 
## [124,] "6.3"        "2.7"       "4.9"        "1.8"       "virginica" 
## [125,] "6.7"        "3.3"       "5.7"        "2.1"       "virginica" 
## [126,] "7.2"        "3.2"       "6.0"        "1.8"       "virginica" 
## [127,] "6.2"        "2.8"       "4.8"        "1.8"       "virginica" 
## [128,] "6.1"        "3.0"       "4.9"        "1.8"       "virginica" 
## [129,] "6.4"        "2.8"       "5.6"        "2.1"       "virginica" 
## [130,] "7.2"        "3.0"       "5.8"        "1.6"       "virginica" 
## [131,] "7.4"        "2.8"       "6.1"        "1.9"       "virginica" 
## [132,] "7.9"        "3.8"       "6.4"        "2.0"       "virginica" 
## [133,] "6.4"        "2.8"       "5.6"        "2.2"       "virginica" 
## [134,] "6.3"        "2.8"       "5.1"        "1.5"       "virginica" 
## [135,] "6.1"        "2.6"       "5.6"        "1.4"       "virginica" 
## [136,] "7.7"        "3.0"       "6.1"        "2.3"       "virginica" 
## [137,] "6.3"        "3.4"       "5.6"        "2.4"       "virginica" 
## [138,] "6.4"        "3.1"       "5.5"        "1.8"       "virginica" 
## [139,] "6.0"        "3.0"       "4.8"        "1.8"       "virginica" 
## [140,] "6.9"        "3.1"       "5.4"        "2.1"       "virginica" 
## [141,] "6.7"        "3.1"       "5.6"        "2.4"       "virginica" 
## [142,] "6.9"        "3.1"       "5.1"        "2.3"       "virginica" 
## [143,] "5.8"        "2.7"       "5.1"        "1.9"       "virginica" 
## [144,] "6.8"        "3.2"       "5.9"        "2.3"       "virginica" 
## [145,] "6.7"        "3.3"       "5.7"        "2.5"       "virginica" 
## [146,] "6.7"        "3.0"       "5.2"        "2.3"       "virginica" 
## [147,] "6.3"        "2.5"       "5.0"        "1.9"       "virginica" 
## [148,] "6.5"        "3.0"       "5.2"        "2.0"       "virginica" 
## [149,] "6.2"        "3.4"       "5.4"        "2.3"       "virginica" 
## [150,] "5.9"        "3.0"       "5.1"        "1.8"       "virginica"
  1. Now do this again, but this time leave out the Species column. Check that the elements are now numeric.
as.matrix(subset(iris,select = -c(Species)))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1            5.1         3.5          1.4         0.2
## 2            4.9         3.0          1.4         0.2
## 3            4.7         3.2          1.3         0.2
## 4            4.6         3.1          1.5         0.2
## 5            5.0         3.6          1.4         0.2
## 6            5.4         3.9          1.7         0.4
## 7            4.6         3.4          1.4         0.3
## 8            5.0         3.4          1.5         0.2
## 9            4.4         2.9          1.4         0.2
## 10           4.9         3.1          1.5         0.1
## 11           5.4         3.7          1.5         0.2
## 12           4.8         3.4          1.6         0.2
## 13           4.8         3.0          1.4         0.1
## 14           4.3         3.0          1.1         0.1
## 15           5.8         4.0          1.2         0.2
## 16           5.7         4.4          1.5         0.4
## 17           5.4         3.9          1.3         0.4
## 18           5.1         3.5          1.4         0.3
## 19           5.7         3.8          1.7         0.3
## 20           5.1         3.8          1.5         0.3
## 21           5.4         3.4          1.7         0.2
## 22           5.1         3.7          1.5         0.4
## 23           4.6         3.6          1.0         0.2
## 24           5.1         3.3          1.7         0.5
## 25           4.8         3.4          1.9         0.2
## 26           5.0         3.0          1.6         0.2
## 27           5.0         3.4          1.6         0.4
## 28           5.2         3.5          1.5         0.2
## 29           5.2         3.4          1.4         0.2
## 30           4.7         3.2          1.6         0.2
## 31           4.8         3.1          1.6         0.2
## 32           5.4         3.4          1.5         0.4
## 33           5.2         4.1          1.5         0.1
## 34           5.5         4.2          1.4         0.2
## 35           4.9         3.1          1.5         0.2
## 36           5.0         3.2          1.2         0.2
## 37           5.5         3.5          1.3         0.2
## 38           4.9         3.6          1.4         0.1
## 39           4.4         3.0          1.3         0.2
## 40           5.1         3.4          1.5         0.2
## 41           5.0         3.5          1.3         0.3
## 42           4.5         2.3          1.3         0.3
## 43           4.4         3.2          1.3         0.2
## 44           5.0         3.5          1.6         0.6
## 45           5.1         3.8          1.9         0.4
## 46           4.8         3.0          1.4         0.3
## 47           5.1         3.8          1.6         0.2
## 48           4.6         3.2          1.4         0.2
## 49           5.3         3.7          1.5         0.2
## 50           5.0         3.3          1.4         0.2
## 51           7.0         3.2          4.7         1.4
## 52           6.4         3.2          4.5         1.5
## 53           6.9         3.1          4.9         1.5
## 54           5.5         2.3          4.0         1.3
## 55           6.5         2.8          4.6         1.5
## 56           5.7         2.8          4.5         1.3
## 57           6.3         3.3          4.7         1.6
## 58           4.9         2.4          3.3         1.0
## 59           6.6         2.9          4.6         1.3
## 60           5.2         2.7          3.9         1.4
## 61           5.0         2.0          3.5         1.0
## 62           5.9         3.0          4.2         1.5
## 63           6.0         2.2          4.0         1.0
## 64           6.1         2.9          4.7         1.4
## 65           5.6         2.9          3.6         1.3
## 66           6.7         3.1          4.4         1.4
## 67           5.6         3.0          4.5         1.5
## 68           5.8         2.7          4.1         1.0
## 69           6.2         2.2          4.5         1.5
## 70           5.6         2.5          3.9         1.1
## 71           5.9         3.2          4.8         1.8
## 72           6.1         2.8          4.0         1.3
## 73           6.3         2.5          4.9         1.5
## 74           6.1         2.8          4.7         1.2
## 75           6.4         2.9          4.3         1.3
## 76           6.6         3.0          4.4         1.4
## 77           6.8         2.8          4.8         1.4
## 78           6.7         3.0          5.0         1.7
## 79           6.0         2.9          4.5         1.5
## 80           5.7         2.6          3.5         1.0
## 81           5.5         2.4          3.8         1.1
## 82           5.5         2.4          3.7         1.0
## 83           5.8         2.7          3.9         1.2
## 84           6.0         2.7          5.1         1.6
## 85           5.4         3.0          4.5         1.5
## 86           6.0         3.4          4.5         1.6
## 87           6.7         3.1          4.7         1.5
## 88           6.3         2.3          4.4         1.3
## 89           5.6         3.0          4.1         1.3
## 90           5.5         2.5          4.0         1.3
## 91           5.5         2.6          4.4         1.2
## 92           6.1         3.0          4.6         1.4
## 93           5.8         2.6          4.0         1.2
## 94           5.0         2.3          3.3         1.0
## 95           5.6         2.7          4.2         1.3
## 96           5.7         3.0          4.2         1.2
## 97           5.7         2.9          4.2         1.3
## 98           6.2         2.9          4.3         1.3
## 99           5.1         2.5          3.0         1.1
## 100          5.7         2.8          4.1         1.3
## 101          6.3         3.3          6.0         2.5
## 102          5.8         2.7          5.1         1.9
## 103          7.1         3.0          5.9         2.1
## 104          6.3         2.9          5.6         1.8
## 105          6.5         3.0          5.8         2.2
## 106          7.6         3.0          6.6         2.1
## 107          4.9         2.5          4.5         1.7
## 108          7.3         2.9          6.3         1.8
## 109          6.7         2.5          5.8         1.8
## 110          7.2         3.6          6.1         2.5
## 111          6.5         3.2          5.1         2.0
## 112          6.4         2.7          5.3         1.9
## 113          6.8         3.0          5.5         2.1
## 114          5.7         2.5          5.0         2.0
## 115          5.8         2.8          5.1         2.4
## 116          6.4         3.2          5.3         2.3
## 117          6.5         3.0          5.5         1.8
## 118          7.7         3.8          6.7         2.2
## 119          7.7         2.6          6.9         2.3
## 120          6.0         2.2          5.0         1.5
## 121          6.9         3.2          5.7         2.3
## 122          5.6         2.8          4.9         2.0
## 123          7.7         2.8          6.7         2.0
## 124          6.3         2.7          4.9         1.8
## 125          6.7         3.3          5.7         2.1
## 126          7.2         3.2          6.0         1.8
## 127          6.2         2.8          4.8         1.8
## 128          6.1         3.0          4.9         1.8
## 129          6.4         2.8          5.6         2.1
## 130          7.2         3.0          5.8         1.6
## 131          7.4         2.8          6.1         1.9
## 132          7.9         3.8          6.4         2.0
## 133          6.4         2.8          5.6         2.2
## 134          6.3         2.8          5.1         1.5
## 135          6.1         2.6          5.6         1.4
## 136          7.7         3.0          6.1         2.3
## 137          6.3         3.4          5.6         2.4
## 138          6.4         3.1          5.5         1.8
## 139          6.0         3.0          4.8         1.8
## 140          6.9         3.1          5.4         2.1
## 141          6.7         3.1          5.6         2.4
## 142          6.9         3.1          5.1         2.3
## 143          5.8         2.7          5.1         1.9
## 144          6.8         3.2          5.9         2.3
## 145          6.7         3.3          5.7         2.5
## 146          6.7         3.0          5.2         2.3
## 147          6.3         2.5          5.0         1.9
## 148          6.5         3.0          5.2         2.0
## 149          6.2         3.4          5.4         2.3
## 150          5.9         3.0          5.1         1.8

Basic statistics

  1. Use the summary function to extract the median, 1st quartile and 3rd quartile data from the Sepal.Length column.
summary(iris$Sepal.Length)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   4.300   5.100   5.800   5.843   6.400   7.900
  1. Find the max, min, standard deviation and mean of the Sepal.Length (max(), min(), sd(), mean())
max(iris$Sepal.Length)
## [1] 7.9
min(iris$Sepal.Length)
## [1] 4.3
sd(iris$Sepal.Length)
## [1] 0.8280661
mean(iris$Sepal.Length)
## [1] 5.843333
  1. Find the mean Sepal.Length of each Species.
by(iris,iris$Species,function(x){
  mean.sl<- mean(x$Sepal.Length)
})
## iris$Species: setosa
## [1] 5.006
## -------------------------------------------------------- 
## iris$Species: versicolor
## [1] 5.936
## -------------------------------------------------------- 
## iris$Species: virginica
## [1] 6.588

Basic plotting

  1. Make a boxplot of the species versus the Sepal.Length using boxplot().
plot(iris$Species,iris$Sepal.Length)

  1. Plot Sepal.Length against Petal.Length using plot().
plot(iris$Sepal.Length,iris$Petal.Length)

File I/O

  1. Download the iris.csv file from the Canvas page and use the read.csv command to read in the csv file into R. Save the data into a data frame called iris2.
iris2<-read.csv(file="~/OneDrive - DMG/Desktop/USYD/STAT5003/Week1/Tutorial/iris.csv",header=TRUE,sep=",")
  1. Write the iris2 data frame to a file called myiris.csv. Use the write.table command.
iris2<- read.csv(file="~/OneDrive - DMG/Desktop/USYD/STAT5003/Week1/Tutorial/iris.csv",header=TRUE,sep=",")
write.table(iris2,file="~/OneDrive - DMG/Desktop/USYD/STAT5003/Week1/Tutorial/iris.csv")