catboost3

##  [1] "CRASH_NUM1"         "ACCESS_CNTL_CD"     "ALIGNMENT_CD"      
##  [4] "HWY_TYPE_CD"        "INVEST_AGENCY_CD"   "LIGHTING_CD"       
##  [7] "LOC_TYPE_CD"        "MAN_COLL_CD"        "PRI_CONTRIB_FAC_CD"
## [10] "ROAD_COND_CD"       "ROAD_REL_CD"        "ROAD_TYPE_CD"      
## [13] "SEC_CONTRIB_FAC_CD" "SURF_COND_CD"       "SURF_TYPE_CD"      
## [16] "WEATHER_CD"         "CR_MONTH"           "CR_HOUR"           
## [19] "DAY_OF_WK"          "INTERSECTION"       "NUM_VEH"           
## [22] "SEVERITY_CD"
## [1] 338  19
##   HWY_TYPE_CD INVEST_AGENCY_CD LIGHTING_CD LOC_TYPE_CD MAN_COLL_CD
## 1           E                B           C           D           D
## 2           D                C           A           D           Z
## 3           C                C           A           C           Z
## 4           C                B           A           C           B
## 5           E                B           A           C           D
## 6           E                B           A           D           D
##   PRI_CONTRIB_FAC_CD ROAD_COND_CD ROAD_REL_CD ROAD_TYPE_CD SEC_CONTRIB_FAC_CD
## 1                  A            A           A            B                  D
## 2                  B            A           A            B                  A
## 3                  B            A           A            B                  B
## 4                  A            A           A            B                  K
## 5                  A            A           A            B                  D
## 6                  B            A           A            B                  B
##   SURF_COND_CD SURF_TYPE_CD SEVERITY_CD
## 1            A            B           1
## 2            A            B           1
## 3            A            B           1
## 4            A            B           1
## 5            A            A           1
## 6            A            B           1
## Catboost 
## 
## 338 samples
##  12 predictor
##   2 classes: 'X0', 'X1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 305, 304, 304, 304, 304, 304, ... 
## Resampling results across tuning parameters:
## 
##   depth  Accuracy   Kappa    
##   4      0.7109031  0.1781869
##   6      0.7060903  0.1738692
##   8      0.7021687  0.1845978
## 
## Tuning parameter 'learning_rate' was held constant at a value of 0.1
## 
## Tuning parameter 'rsm' was held constant at a value of 0.95
## Tuning
##  parameter 'border_count' was held constant at a value of 64
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were depth = 4, learning_rate =
##  0.1, iterations = 100, l2_leaf_reg = 0.1, rsm = 0.95 and border_count = 64.
## custom variable importance
## 
##                    Overall
## MAN_COLL_CD         38.136
## ROAD_REL_CD         12.276
## LOC_TYPE_CD         10.135
## PRI_CONTRIB_FAC_CD   8.616
## LIGHTING_CD          6.555
## HWY_TYPE_CD          5.395
## SURF_COND_CD         4.553
## ROAD_TYPE_CD         4.240
## SEC_CONTRIB_FAC_CD   3.995
## INVEST_AGENCY_CD     2.760
## ROAD_COND_CD         2.077
## SURF_TYPE_CD         1.262
##          X0        X1
## 1 0.2413927 0.7586073
## 2 0.2269562 0.7730438
## 3 0.3139344 0.6860656
## 4 0.4853218 0.5146782
## 5 0.3409804 0.6590196
## 6 0.2474986 0.7525014
## 
## Call:
## summary.resamples(object = results)
## 
## Models: CART, LDA, SVM, KNN, RF, CB 
## Number of resamples: 30 
## 
## Accuracy 
##           Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## CART 0.6470588 0.6857143 0.6969697 0.6914320 0.6969697 0.7058824    0
## LDA  0.6176471 0.6439394 0.6862745 0.6875435 0.7219251 0.7714286   24
## SVM  0.6764706 0.6857143 0.6969697 0.6984152 0.7036542 0.7878788    0
## KNN  0.5882353 0.6857143 0.6969697 0.7000891 0.7272727 0.7714286    0
## RF   0.6764706 0.6857143 0.6969697 0.6924124 0.6969697 0.7058824    0
## CB   0.5882353 0.6815954 0.7058824 0.7109031 0.7352941 0.7941176    0
## 
## Kappa 
##             Min.   1st Qu.     Median         Mean   3rd Qu.      Max. NA's
## CART -0.05699482 0.0000000 0.00000000 -0.001899827 0.0000000 0.0000000    0
## LDA  -0.04739336 0.1397014 0.16466680  0.187895366 0.2678825 0.4117647   24
## SVM   0.00000000 0.0000000 0.00000000  0.027110508 0.0000000 0.3739837    0
## KNN  -0.20202020 0.0000000 0.06814702  0.079320720 0.1341108 0.3396226    0
## RF    0.00000000 0.0000000 0.00000000  0.000000000 0.0000000 0.0000000    0
## CB   -0.16260163 0.1151008 0.19661758  0.178186948 0.2861717 0.4195122    0

2020-02-24