dat <- fread("Output/wheat_data_prepped.csv")
#fix rotation
dat[local=="Tygerhoek", rotation := "CW"]
#drop all blank yields and biomass estimates
dat <- dat[!is.na(yld) & is.na(yldb) & spray == "F1"]
dat[, c("wind","yldb") := NULL]
# Max yield index ---------------------------------------------------------
dat[, yld_max := max(yld,na.rm = T), by = .(year,local,rotation,rep)]
#keep original yield
dat[, yld.OR := yld]
#calculate control normalised yield
dat[, yld := yld/yld_max*100]
#remove sprayed N
dat[, N_tot := N_tot - N_spray]
Langgewens Canola-Wheat results, 2018 was excluded due to wind damage.
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2019 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.237*** | -0.075 | 0.187 |
| (0.046) | (0.059) | (0.144) | |
| Total Nitrogen Applied squared | -0.001*** | 0.0002 | -0.001 |
| (0.0002) | (0.0003) | (0.001) | |
| Intercept | 72.608*** | 84.932*** | 76.314*** |
| (1.848) | (2.359) | (5.758) | |
| Observations | 126 | 128 | 32 |
| R2 | 0.282 | 0.043 | 0.064 |
| Adjusted R2 | 0.270 | 0.028 | -0.001 |
| Residual Std. Error | 8.930 (df = 123) | 11.401 (df = 125) | 13.917 (df = 29) |
| F Statistic | 24.108*** (df = 2; 123) | 2.831* (df = 2; 125) | 0.990 (df = 2; 29) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
grid.arrange(p.seg.2016.Langgewens.CW,p.seg.2019.Langgewens.CW, nrow =1)
## Warning: Removed 1 rows containing missing values (geom_errorbarh).
## Warning: Removed 1 rows containing missing values (geom_vline).
summary.segmented(m.seg.2016.Langgewens.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 81.394 16.069
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.60949 1.86678 38.896 < 2e-16 ***
## N_tot 0.19232 0.03991 4.818 4.21e-06 ***
## U1.N_tot -0.19714 0.05202 -3.789 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.925 on 122 degrees of freedom
## Multiple R-Squared: 0.2883, Adjusted R-squared: 0.2708
##
## Convergence attained in 2 iter. (rel. change 1.8718e-16)
slope(m.seg.2016.Langgewens.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.1923200 0.039913 4.81840 0.11331 0.271330
## slope2 -0.0048227 0.033369 -0.14453 -0.07088 0.061235
summary.segmented(m.seg.2019.Langgewens.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 61.716 33.336
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 73.5273 6.2959 11.679 2.82e-12 ***
## N_tot 0.2555 0.1951 1.310 0.201
## U1.N_tot -0.3056 0.2090 -1.462 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.79 on 28 degrees of freedom
## Multiple R-Squared: 0.1121, Adjusted R-squared: 0.01697
##
## Convergence attained in 3 iter. (rel. change 3.4144e-16)
slope(m.seg.2019.Langgewens.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.255460 0.19507 1.30960 -0.14412 0.65505
## slope2 -0.050131 0.07516 -0.66699 -0.20409 0.10383
Langgewens Medics-Wheat results, 2018 was excluded due to wind damage.
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2019 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.225*** | -0.047 | -0.217 |
| (0.073) | (0.136) | (0.130) | |
| Total Nitrogen Applied squared | -0.001*** | 0.0003 | 0.001 |
| (0.0004) | (0.001) | (0.001) | |
| Intercept | 83.373*** | 81.663*** | 90.963*** |
| (2.947) | (5.441) | (5.207) | |
| Observations | 32 | 32 | 32 |
| R2 | 0.249 | 0.017 | 0.096 |
| Adjusted R2 | 0.197 | -0.051 | 0.034 |
| Residual Std. Error (df = 29) | 7.124 | 13.151 | 12.584 |
| F Statistic (df = 2; 29) | 4.809** | 0.244 | 1.547 |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
p.seg.2016.Langgewens.MW
summary.segmented(m.seg.2016.Langgewens.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 28.931 7.701
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 78.7553 3.2693 24.090 < 2e-16 ***
## N_tot 0.5839 0.1849 3.158 0.00379 **
## U1.N_tot -0.6145 0.1870 -3.286 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.539 on 28 degrees of freedom
## Multiple R-Squared: 0.3892, Adjusted R-squared: 0.3237
##
## Convergence attained in 2 iter. (rel. change 1.8993e-16)
slope(m.seg.2016.Langgewens.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.583940 0.184940 3.1575 0.205120 0.962770
## slope2 -0.030592 0.027742 -1.1027 -0.087419 0.026235
Darling Canola-Wheat results
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2018 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.527** | -0.058 | 0.382*** |
| (0.223) | (0.157) | (0.100) | |
| Total Nitrogen Applied squared | -0.002 | -0.001 | -0.002*** |
| (0.001) | (0.001) | (0.001) | |
| Intercept | 41.342*** | 86.689*** | 68.546*** |
| (8.961) | (6.193) | (4.002) | |
| Observations | 32 | 31 | 32 |
| R2 | 0.333 | 0.347 | 0.370 |
| Adjusted R2 | 0.287 | 0.300 | 0.326 |
| Residual Std. Error | 21.658 (df = 29) | 14.928 (df = 28) | 9.672 (df = 29) |
| F Statistic | 7.241*** (df = 2; 29) | 7.439*** (df = 2; 28) | 8.506*** (df = 2; 29) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
p.seg.2018.Darling.CW
summary.segmented(m.seg.2018.Darling.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 97.695 18.135
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.33299 3.97737 17.432 < 2e-16 ***
## N_tot 0.25378 0.08504 2.984 0.00584 **
## U1.N_tot -0.38498 0.11070 -3.478 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.508 on 28 degrees of freedom
## Multiple R-Squared: 0.4119, Adjusted R-squared: 0.3489
##
## Convergence attained in 3 iter. (rel. change 0)
slope(m.seg.2018.Darling.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.25378 0.085040 2.9842 0.079582 0.427970
## slope2 -0.13120 0.070866 -1.8514 -0.276370 0.013959
Darling Medics-Wheat results
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2018 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.722*** | -0.085 | 0.705*** |
| (0.120) | (0.233) | (0.176) | |
| Total Nitrogen Applied squared | -0.002*** | 0.001 | -0.002** |
| (0.001) | (0.001) | (0.001) | |
| Intercept | 31.381*** | 71.952*** | 26.670*** |
| (4.832) | (9.190) | (7.063) | |
| Observations | 32 | 31 | 32 |
| R2 | 0.778 | 0.023 | 0.603 |
| Adjusted R2 | 0.763 | -0.046 | 0.576 |
| Residual Std. Error | 11.680 (df = 29) | 22.153 (df = 28) | 17.070 (df = 29) |
| F Statistic | 50.927*** (df = 2; 29) | 0.336 (df = 2; 28) | 22.018*** (df = 2; 29) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
grid.arrange(p.seg.2016.Darling.MW,p.seg.2018.Darling.MW, nrow =1)
summary.segmented(m.seg.2016.Darling.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 56.116 13.077
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.5918 5.2525 5.443 8.26e-06 ***
## N_tot 0.7837 0.1627 4.816 4.59e-05 ***
## U1.N_tot -0.6182 0.1744 -3.544 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.51 on 28 degrees of freedom
## Multiple R-Squared: 0.7923, Adjusted R-squared: 0.77
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2016.Darling.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.78372 0.162740 4.8157 0.450350 1.11710
## slope2 0.16556 0.062705 2.6403 0.037116 0.29401
summary.segmented(m.seg.2018.Darling.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 93.505 21.957
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.3426 6.9776 3.775 0.000765 ***
## N_tot 0.5799 0.1492 3.887 0.000568 ***
## U1.N_tot -0.5495 0.1942 -2.830 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.68 on 28 degrees of freedom
## Multiple R-Squared: 0.6339, Adjusted R-squared: 0.5947
##
## Convergence attained in 3 iter. (rel. change 0)
slope(m.seg.2018.Darling.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.579890 0.14919 3.88700 0.27429 0.88549
## slope2 0.030384 0.12432 0.24439 -0.22428 0.28505
Porterville Canola-Wheat results
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.650** | -0.376** | 0.270** | 0.406** |
| (0.267) | (0.178) | (0.119) | (0.165) | |
| Total Nitrogen Applied squared | -0.002 | 0.001 | -0.001 | -0.001* |
| (0.001) | (0.001) | (0.001) | (0.001) | |
| Intercept | 23.121** | 91.660*** | 63.519*** | 56.091*** |
| (10.690) | (7.125) | (4.769) | (6.628) | |
| Observations | 32 | 32 | 32 | 32 |
| R2 | 0.296 | 0.209 | 0.493 | 0.271 |
| Adjusted R2 | 0.247 | 0.155 | 0.458 | 0.221 |
| Residual Std. Error (df = 29) | 25.838 | 17.221 | 11.526 | 16.019 |
| F Statistic (df = 2; 29) | 6.090*** | 3.836** | 14.086*** | 5.392** |
| Note: | p<0.1; p<0.05; p<0.01 | |||
It is evident that only 2016 has a good fit.
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
grid.arrange(p.seg.2016.Porterville.CW,p.seg.2019.Porterville.CW, nrow =1)
## Warning: Removed 1 rows containing missing values (geom_text).
## Warning: Removed 1 rows containing missing values (geom_errorbarh).
## Warning: Removed 1 rows containing missing values (geom_vline).
summary.segmented(m.seg.2016.Porterville.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 128.809 26.414
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.6924 9.9325 2.587 0.0152 *
## N_tot 0.4135 0.1622 2.549 0.0166 *
## U1.N_tot -0.6980 0.3430 -2.035 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.65 on 28 degrees of freedom
## Multiple R-Squared: 0.3301, Adjusted R-squared: 0.2584
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2016.Porterville.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.41352 0.16220 2.54950 0.081273 0.74576
## slope2 -0.28451 0.30224 -0.94136 -0.903620 0.33459
summary.segmented(m.seg.2019.Porterville.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 37.532 25.568
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.1633 8.1244 6.544 4.29e-07 ***
## N_tot 0.6113 0.4596 1.330 0.194
## U1.N_tot -0.5624 0.4647 -1.210 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.25 on 28 degrees of freedom
## Multiple R-Squared: 0.2758, Adjusted R-squared: 0.1982
##
## Convergence attained in 2 iter. (rel. change 2.2708e-06)
slope(m.seg.2019.Porterville.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.611310 0.459590 1.33010 -0.330110 1.55270
## slope2 0.048936 0.068941 0.70982 -0.092284 0.19016
Porterville Medics-Wheat results
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.294** | -0.159 | 0.216 | -0.071 |
| (0.124) | (0.174) | (0.144) | (0.128) | |
| Total Nitrogen Applied squared | -0.001* | 0.001 | -0.001 | 0.0003 |
| (0.001) | (0.001) | (0.001) | (0.001) | |
| Intercept | 68.592*** | 81.182*** | 74.432*** | 83.563*** |
| (4.954) | (6.974) | (5.793) | (5.135) | |
| Observations | 32 | 32 | 32 | 32 |
| R2 | 0.204 | 0.031 | 0.095 | 0.018 |
| Adjusted R2 | 0.149 | -0.036 | 0.032 | -0.049 |
| Residual Std. Error (df = 29) | 11.974 | 16.855 | 14.001 | 12.411 |
| F Statistic (df = 2; 29) | 3.714** | 0.463 | 1.518 | 0.271 |
| Note: | p<0.1; p<0.05; p<0.01 | |||
It is evident that only 2016 has a good fit.
p.seg.2016.Porterville.MW
summary.segmented(m.seg.2016.Porterville.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 146.834 20.949
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 70.6933 4.2476 16.64 4.72e-16 ***
## N_tot 0.1488 0.0551 2.70 0.0116 *
## U1.N_tot -0.4929 0.2849 -1.73 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.86 on 28 degrees of freedom
## Multiple R-Squared: 0.2457, Adjusted R-squared: 0.1649
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2016.Porterville.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.14877 0.055104 2.6997 0.03589 0.26164
## slope2 -0.34414 0.279570 -1.2310 -0.91683 0.22854
Not one of the models has a good fit, there is no response to fertiliser.
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2018 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | -0.015 | 0.065 | 0.078 |
| (0.132) | (0.084) | (0.118) | |
| Total Nitrogen Applied squared | -0.00000 | -0.0005 | -0.0002 |
| (0.001) | (0.0004) | (0.001) | |
| Intercept | 82.267*** | 88.119*** | 81.368*** |
| (5.300) | (3.363) | (4.736) | |
| Observations | 32 | 32 | 32 |
| R2 | 0.006 | 0.074 | 0.037 |
| Adjusted R2 | -0.063 | 0.010 | -0.029 |
| Residual Std. Error (df = 29) | 12.810 | 8.128 | 11.446 |
| F Statistic (df = 2; 29) | 0.084 | 1.155 | 0.559 |
| Note: | p<0.1; p<0.05; p<0.01 | ||
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
All years show a good fit except for 2017
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.595*** | 0.047 | 0.630*** | 0.412** |
| (0.135) | (0.099) | (0.111) | (0.168) | |
| Total Nitrogen Applied squared | -0.002*** | -0.0001 | -0.003*** | -0.002** |
| (0.001) | (0.0005) | (0.001) | (0.001) | |
| Intercept | 56.393*** | 84.106*** | 57.501*** | 69.452*** |
| (5.428) | (3.952) | (4.455) | (6.728) | |
| Observations | 32 | 32 | 31 | 32 |
| R2 | 0.500 | 0.055 | 0.549 | 0.173 |
| Adjusted R2 | 0.466 | -0.011 | 0.517 | 0.115 |
| Residual Std. Error | 13.120 (df = 29) | 9.551 (df = 29) | 10.724 (df = 28) | 16.260 (df = 29) |
| F Statistic | 14.520*** (df = 2; 29) | 0.838 (df = 2; 29) | 17.064*** (df = 2; 28) | 3.024* (df = 2; 29) |
| Note: | p<0.1; p<0.05; p<0.01 | |||
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
grid.arrange(p.seg.2016.Tygerhoek.CW, p.seg.2018.Tygerhoek.CW,p.seg.2019.Tygerhoek.CW, nrow =2)
summary.segmented(m.seg.2016.Tygerhoek.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 60.985 16.403
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.8005 6.0825 9.009 9.14e-10 ***
## N_tot 0.5906 0.1885 3.134 0.00402 **
## U1.N_tot -0.5958 0.2020 -2.950 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.33 on 28 degrees of freedom
## Multiple R-Squared: 0.5023, Adjusted R-squared: 0.449
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2016.Tygerhoek.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.5906400 0.188460 3.134000 0.20460 0.97669
## slope2 -0.0051866 0.072614 -0.071427 -0.15393 0.14356
summary.segmented(m.seg.2018.Tygerhoek.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 35.971 7.462
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.9976 5.1463 9.910 1.72e-10 ***
## N_tot 1.1227 0.2911 3.857 0.000646 ***
## U1.N_tot -1.1942 0.2947 -4.053 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.29 on 27 degrees of freedom
## Multiple R-Squared: 0.5997, Adjusted R-squared: 0.5552
##
## Convergence attained in 2 iter. (rel. change 3.1796e-16)
slope(m.seg.2018.Tygerhoek.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 1.122700 0.291120 3.8566 0.52541 1.720100
## slope2 -0.071493 0.045668 -1.5655 -0.16520 0.022209
summary.segmented(m.seg.2019.Tygerhoek.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 99.131 27.897
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.1512 6.8984 10.314 4.84e-11 ***
## N_tot 0.2364 0.1475 1.603 0.12
## U1.N_tot -0.4367 0.1920 -2.274 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.49 on 28 degrees of freedom
## Multiple R-Squared: 0.1784, Adjusted R-squared: 0.09032
##
## Convergence attained in 3 iter. (rel. change 0)
slope(m.seg.2019.Tygerhoek.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.23645 0.14749 1.6031 -0.06568 0.538570
## slope2 -0.20023 0.12291 -1.6291 -0.45201 0.051537
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.780*** | 0.315 | -0.210 | 0.133 |
| (0.160) | (0.231) | (0.506) | (0.189) | |
| Total Nitrogen Applied squared | -0.002** | -0.002 | 0.002 | -0.001 |
| (0.001) | (0.001) | (0.003) | (0.001) | |
| Intercept | 35.977*** | 71.477*** | 60.888** | 81.328*** |
| (6.428) | (9.281) | (20.301) | (7.824) | |
| Observations | 8 | 8 | 8 | 23 |
| R2 | 0.921 | 0.270 | 0.267 | 0.211 |
| Adjusted R2 | 0.889 | -0.021 | -0.027 | 0.133 |
| Residual Std. Error | 7.768 (df = 5) | 11.216 (df = 5) | 24.533 (df = 5) | 15.778 (df = 20) |
| F Statistic | 29.165*** (df = 2; 5) | 0.927 (df = 2; 5) | 0.908 (df = 2; 5) | 2.682* (df = 2; 20) |
| Note: | p<0.1; p<0.05; p<0.01 | |||
p.seg.2017.Riversdale.CW
## Warning: Removed 1 rows containing missing values (geom_text).
## Warning: Removed 1 rows containing missing values (geom_errorbarh).
## Warning: Removed 1 rows containing missing values (geom_vline).
summary.segmented(m.seg.2017.Riversdale.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 84.176 35.766
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.8149 9.2469 7.550 0.00165 **
## N_tot 0.2748 0.1977 1.390 0.23695
## U1.N_tot -0.4391 0.2574 -1.706 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.05 on 4 degrees of freedom
## Multiple R-Squared: 0.4332, Adjusted R-squared: 0.00815
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2017.Riversdale.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.27477 0.19771 1.38980 -0.27416 0.82369
## slope2 -0.16435 0.16476 -0.99752 -0.62178 0.29309