dat <- fread("Output/wheat_data_prepped.csv")
#fix rotation
dat[local=="Tygerhoek", rotation := "CW"]
#drop all blank yields and biomass estimates
dat <- dat[!is.na(yld) & is.na(yldb)]
dat[, c("wind","yldb") := NULL]
# Max yield index ---------------------------------------------------------
dat[, yld_max := max(yld,na.rm = T), by = .(year,local,rotation)]
#keep original yield
dat[, yld.OR := yld]
#calculate control normalised yield
dat[, yld := yld/yld_max*100]
#remove sprayed N
dat[, N_tot := N_tot - N_spray]
Langgewens Canola-Wheat results, 2018 was excluded due to wind damage.
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2019 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.231*** | -0.073 | 0.085 |
| (0.046) | (0.052) | (0.083) | |
| Total Nitrogen Applied squared | -0.001*** | 0.0002 | -0.0004 |
| (0.0002) | (0.0003) | (0.0004) | |
| Intercept | 70.105*** | 77.606*** | 64.720*** |
| (1.825) | (2.092) | (3.324) | |
| Observations | 126 | 128 | 64 |
| R2 | 0.274 | 0.050 | 0.017 |
| Adjusted R2 | 0.262 | 0.035 | -0.015 |
| Residual Std. Error | 8.821 (df = 123) | 10.112 (df = 125) | 11.363 (df = 61) |
| F Statistic | 23.181*** (df = 2; 123) | 3.287** (df = 2; 125) | 0.533 (df = 2; 61) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
grid.arrange(p.seg.2016.Langgewens.CW,p.seg.2019.Langgewens.CW, nrow =1)
summary.segmented(m.seg.2016.Langgewens.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 58.914 13.45
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.09987 2.00399 34.481 < 2e-16 ***
## N_tot 0.24690 0.06209 3.976 0.000119 ***
## U1.N_tot -0.23488 0.06660 -3.527 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.781 on 122 degrees of freedom
## Multiple R-Squared: 0.2861, Adjusted R-squared: 0.2686
##
## Convergence attained in 2 iter. (rel. change 1.9336e-16)
slope(m.seg.2016.Langgewens.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.246900 0.062091 3.97640 0.123980 0.369810
## slope2 0.012018 0.024078 0.49913 -0.035647 0.059684
summary.segmented(m.seg.2019.Langgewens.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 50.721 23.79
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.8266 3.6140 17.108 <2e-16 ***
## N_tot 0.1864 0.1120 1.665 0.101
## U1.N_tot -0.2250 0.1200 -1.875 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.2 on 60 degrees of freedom
## Multiple R-Squared: 0.06126, Adjusted R-squared: 0.01432
##
## Convergence attained in 4 iter. (rel. change 0)
slope(m.seg.2019.Langgewens.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.186390 0.111980 1.66460 -0.037593 0.41038
## slope2 -0.038601 0.043144 -0.89471 -0.124900 0.04770
Langgewens Medics-Wheat results, 2018 was excluded due to wind damage.
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2019 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.215*** | 0.025 | -0.132 |
| (0.068) | (0.102) | (0.120) | |
| Total Nitrogen Applied squared | -0.001*** | -0.0001 | 0.001 |
| (0.0003) | (0.001) | (0.001) | |
| Intercept | 73.014*** | 71.756*** | 63.720*** |
| (2.730) | (4.094) | (4.832) | |
| Observations | 64 | 64 | 64 |
| R2 | 0.145 | 0.003 | 0.019 |
| Adjusted R2 | 0.117 | -0.030 | -0.013 |
| Residual Std. Error (df = 61) | 9.331 | 13.993 | 16.516 |
| F Statistic (df = 2; 61) | 5.173*** | 0.077 | 0.597 |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
p.seg.2016.Langgewens.MW
summary.segmented(m.seg.2016.Langgewens.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 58.03 17.34
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.48868 3.06317 23.665 <2e-16 ***
## N_tot 0.21191 0.09491 2.233 0.0293 *
## U1.N_tot -0.27630 0.10171 -2.717 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.491 on 60 degrees of freedom
## Multiple R-Squared: 0.13, Adjusted R-squared: 0.08652
##
## Convergence attained in 2 iter. (rel. change 1.6828e-16)
slope(m.seg.2016.Langgewens.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.211910 0.094909 2.2328 0.022063 0.4017500
## slope2 -0.064389 0.036568 -1.7608 -0.137540 0.0087585
Darling Canola-Wheat results
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2018 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.443*** | -0.099 | 0.195** |
| (0.118) | (0.116) | (0.077) | |
| Total Nitrogen Applied squared | -0.001** | -0.0001 | -0.001* |
| (0.001) | (0.001) | (0.0004) | |
| Intercept | 31.112*** | 71.491*** | 68.823*** |
| (4.748) | (4.623) | (3.084) | |
| Observations | 64 | 63 | 64 |
| R2 | 0.343 | 0.163 | 0.141 |
| Adjusted R2 | 0.322 | 0.135 | 0.113 |
| Residual Std. Error | 16.230 (df = 61) | 15.783 (df = 60) | 10.542 (df = 61) |
| F Statistic | 15.929*** (df = 2; 61) | 5.841*** (df = 2; 60) | 5.006*** (df = 2; 61) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
p.seg.2018.Darling.CW
summary.segmented(m.seg.2018.Darling.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 100 32.021
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 68.79955 2.86347 24.027 <2e-16 ***
## N_tot 0.14464 0.04676 3.093 0.003 **
## U1.N_tot -0.19773 0.09889 -2.000 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.46 on 60 degrees of freedom
## Multiple R-Squared: 0.1688, Adjusted R-squared: 0.1273
##
## Convergence attained in 4 iter. (rel. change 6.841e-07)
slope(m.seg.2018.Darling.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.144640 0.046760 3.09320 0.051104 0.23817
## slope2 -0.053088 0.087132 -0.60928 -0.227380 0.12120
Darling Medics-Wheat results
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2018 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.568*** | 0.011 | 0.589*** |
| (0.084) | (0.138) | (0.115) | |
| Total Nitrogen Applied squared | -0.002*** | 0.00001 | -0.002*** |
| (0.0004) | (0.001) | (0.001) | |
| Intercept | 32.008*** | 57.283*** | 24.987*** |
| (3.382) | (5.473) | (4.613) | |
| Observations | 64 | 63 | 64 |
| R2 | 0.653 | 0.002 | 0.543 |
| Adjusted R2 | 0.642 | -0.031 | 0.528 |
| Residual Std. Error | 11.559 (df = 61) | 18.682 (df = 60) | 15.767 (df = 61) |
| F Statistic | 57.472*** (df = 2; 61) | 0.064 (df = 2; 60) | 36.205*** (df = 2; 61) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
It is evident that only 2016 has a good fit.
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
grid.arrange(p.seg.2016.Darling.MW,p.seg.2018.Darling.MW, nrow =1)
summary.segmented(m.seg.2016.Darling.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 55.891 10.961
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.6280 3.6763 8.059 3.88e-11 ***
## N_tot 0.6217 0.1139 5.458 9.67e-07 ***
## U1.N_tot -0.5153 0.1221 -4.221 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.39 on 60 degrees of freedom
## Multiple R-Squared: 0.6688, Adjusted R-squared: 0.6523
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2016.Darling.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.62168 0.113910 5.4578 0.393830 0.84952
## slope2 0.10640 0.043888 2.4245 0.018617 0.19419
summary.segmented(m.seg.2018.Darling.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 76.147 15.768
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.95802 4.50830 5.092 3.77e-06 ***
## N_tot 0.55856 0.09639 5.795 2.70e-07 ***
## U1.N_tot -0.48707 0.12547 -3.882 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.24 on 60 degrees of freedom
## Multiple R-Squared: 0.5798, Adjusted R-squared: 0.5587
##
## Convergence attained in 3 iter. (rel. change 0)
slope(m.seg.2018.Darling.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.55856 0.096391 5.79470 0.365750 0.75137
## slope2 0.07149 0.080326 0.88999 -0.089187 0.23217
Porterville Canola-Wheat results
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.475*** | -0.123 | 0.285*** | 0.332*** |
| (0.140) | (0.123) | (0.066) | (0.098) | |
| Total Nitrogen Applied squared | -0.002** | 0.0005 | -0.001* | -0.001** |
| (0.001) | (0.001) | (0.0003) | (0.0005) | |
| Intercept | 19.926*** | 61.254*** | 58.953*** | 54.368*** |
| (5.599) | (4.950) | (2.631) | (3.922) | |
| Observations | 64 | 64 | 64 | 64 |
| R2 | 0.284 | 0.024 | 0.572 | 0.232 |
| Adjusted R2 | 0.261 | -0.008 | 0.558 | 0.207 |
| Residual Std. Error (df = 61) | 19.138 | 16.919 | 8.995 | 13.405 |
| F Statistic (df = 2; 61) | 12.098*** | 0.736 | 40.691*** | 9.222*** |
| Note: | p<0.1; p<0.05; p<0.01 | |||
It is evident that only 2016 has a good fit.
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
grid.arrange(p.seg.2016.Porterville.CW, p.seg.2018.Porterville.CW,p.seg.2019.Porterville.CW, nrow =2)
summary.segmented(m.seg.2016.Porterville.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 129.999 19.711
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.18100 5.19341 4.271 7.05e-05 ***
## N_tot 0.29476 0.08481 3.476 0.000953 ***
## U1.N_tot -0.48789 0.17935 -2.720 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.96 on 60 degrees of freedom
## Multiple R-Squared: 0.3085, Adjusted R-squared: 0.2739
##
## Convergence attained in 7 iter. (rel. change 3.8817e-06)
slope(m.seg.2016.Porterville.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.29476 0.084808 3.4756 0.12512 0.46440
## slope2 -0.19313 0.158030 -1.2221 -0.50924 0.12297
summary.segmented(m.seg.2018.Porterville.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 28.062 10.061
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.3706 3.0962 17.883 < 2e-16 ***
## N_tot 0.5574 0.1751 3.183 0.00231 **
## U1.N_tot -0.4371 0.1771 -2.468 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.757 on 60 degrees of freedom
## Multiple R-Squared: 0.6005, Adjusted R-squared: 0.5806
##
## Convergence attained in 3 iter. (rel. change 0)
slope(m.seg.2018.Porterville.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.55744 0.175150 3.1827 0.207100 0.90779
## slope2 0.12031 0.026273 4.5791 0.067755 0.17286
summary.segmented(m.seg.2019.Porterville.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 61.727 20.327
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.0590 4.3279 12.260 <2e-16 ***
## N_tot 0.3423 0.1341 2.553 0.0132 *
## U1.N_tot -0.3446 0.1437 -2.398 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.41 on 60 degrees of freedom
## Multiple R-Squared: 0.2442, Adjusted R-squared: 0.2064
##
## Convergence attained in 3 iter. (rel. change 0)
slope(m.seg.2019.Porterville.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.3423400 0.134090 2.552900 0.074107 0.61057
## slope2 -0.0022218 0.051667 -0.043003 -0.105570 0.10113
Porterville Medics-Wheat results
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.223*** | -0.084 | 0.135 | -0.116 |
| (0.081) | (0.111) | (0.096) | (0.082) | |
| Total Nitrogen Applied squared | -0.001** | 0.0003 | -0.001 | 0.001 |
| (0.0004) | (0.001) | (0.0005) | (0.0004) | |
| Intercept | 65.884*** | 68.226*** | 72.553*** | 73.865*** |
| (3.236) | (4.469) | (3.854) | (3.307) | |
| Observations | 64 | 64 | 64 | 64 |
| R2 | 0.125 | 0.023 | 0.050 | 0.034 |
| Adjusted R2 | 0.096 | -0.009 | 0.019 | 0.003 |
| Residual Std. Error (df = 61) | 11.062 | 15.276 | 13.172 | 11.302 |
| F Statistic (df = 2; 61) | 4.362** | 0.725 | 1.612 | 1.082 |
| Note: | p<0.1; p<0.05; p<0.01 | |||
It is evident that only 2016 has a good fit.
p.seg.2016.Porterville.MW
summary.segmented(m.seg.2016.Porterville.MW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 130 20.533
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 67.47751 3.02386 22.315 <2e-16 ***
## N_tot 0.11003 0.04938 2.228 0.0296 *
## U1.N_tot -0.27270 0.10443 -2.611 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.04 on 60 degrees of freedom
## Multiple R-Squared: 0.1427, Adjusted R-squared: 0.09979
##
## Convergence attained in 1 iter. (rel. change 8.1727e-08)
slope(m.seg.2016.Porterville.MW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.11003 0.049379 2.2283 0.011259 0.208810
## slope2 -0.16266 0.092013 -1.7678 -0.346720 0.021389
Not one of the models has a good fit, there is no response to fertiliser.
| District | |||
| Relative yield (Max trial yield = 100) | |||
| 2016 | 2017 | 2018 | |
| (1) | (2) | (3) | |
| Total Nitrogen Applied | 0.0002 | 0.056 | 0.020 |
| (0.097) | (0.070) | (0.087) | |
| Total Nitrogen Applied squared | -0.0001 | -0.0002 | -0.0001 |
| (0.0005) | (0.0004) | (0.0004) | |
| Intercept | 77.424*** | 74.715*** | 69.491*** |
| (3.903) | (2.802) | (3.538) | |
| Observations | 64 | 64 | 63 |
| R2 | 0.003 | 0.011 | 0.002 |
| Adjusted R2 | -0.030 | -0.021 | -0.031 |
| Residual Std. Error | 13.341 (df = 61) | 9.579 (df = 61) | 11.565 (df = 60) |
| F Statistic | 0.081 (df = 2; 61) | 0.350 (df = 2; 61) | 0.059 (df = 2; 60) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
All years show a good fit except for 2017
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.449*** | 0.014 | 0.443*** | 0.268** |
| (0.095) | (0.061) | (0.090) | (0.108) | |
| Total Nitrogen Applied squared | -0.002*** | 0.00002 | -0.002*** | -0.001** |
| (0.0005) | (0.0003) | (0.0005) | (0.001) | |
| Intercept | 54.178*** | 80.765*** | 55.883*** | 63.365*** |
| (3.807) | (2.455) | (3.614) | (4.340) | |
| Observations | 64 | 64 | 63 | 64 |
| R2 | 0.362 | 0.018 | 0.325 | 0.092 |
| Adjusted R2 | 0.341 | -0.014 | 0.302 | 0.063 |
| Residual Std. Error | 13.011 (df = 61) | 8.390 (df = 61) | 12.330 (df = 60) | 14.834 (df = 61) |
| F Statistic | 17.283*** (df = 2; 61) | 0.567 (df = 2; 61) | 14.438*** (df = 2; 60) | 3.101* (df = 2; 61) |
| Note: | p<0.1; p<0.05; p<0.01 | |||
## Warning: Removed 1 rows containing missing values (geom_vline).
## Warning: Removed 1 rows containing missing values (geom_text).
grid.arrange(p.seg.2016.Tygerhoek.CW, p.seg.2018.Tygerhoek.CW,p.seg.2019.Tygerhoek.CW, nrow =2)
summary.segmented(m.seg.2016.Tygerhoek.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 92.706 18.514
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.54595 3.90963 14.207 < 2e-16 ***
## N_tot 0.30880 0.08359 3.694 0.000479 ***
## U1.N_tot -0.36428 0.10881 -3.348 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.22 on 60 degrees of freedom
## Multiple R-Squared: 0.3521, Adjusted R-squared: 0.3197
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2016.Tygerhoek.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.308800 0.083591 3.69420 0.14159 0.476010
## slope2 -0.055475 0.069660 -0.79638 -0.19481 0.083865
summary.segmented(m.seg.2018.Tygerhoek.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 32.724 6.786
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.1526 4.0911 12.014 < 2e-16 ***
## N_tot 0.9354 0.2314 4.042 0.000156 ***
## U1.N_tot -0.9603 0.2341 -4.102 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.57 on 59 degrees of freedom
## Multiple R-Squared: 0.4153, Adjusted R-squared: 0.3856
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2018.Tygerhoek.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.93544 0.231430 4.0420 0.472350 1.398500
## slope2 -0.02488 0.035467 -0.7015 -0.095849 0.046089
summary.segmented(m.seg.2019.Tygerhoek.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 83.389 24.733
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 63.63471 4.41827 14.403 <2e-16 ***
## N_tot 0.18853 0.09447 1.996 0.0505 .
## U1.N_tot -0.30326 0.12297 -2.466 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.94 on 60 degrees of freedom
## Multiple R-Squared: 0.09484, Adjusted R-squared: 0.04958
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2019.Tygerhoek.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.18853 0.094467 1.9957 -0.00043451 0.377490
## slope2 -0.11473 0.078722 -1.4574 -0.27220000 0.042736
| District | ||||
| Relative yield (Max trial yield = 100) | ||||
| 2016 | 2017 | 2018 | 2019 | |
| (1) | (2) | (3) | (4) | |
| Total Nitrogen Applied | 0.698*** | 0.252 | -0.363 | 0.083 |
| (0.117) | (0.157) | (0.323) | (0.154) | |
| Total Nitrogen Applied squared | -0.002*** | -0.001 | 0.003 | -0.001 |
| (0.001) | (0.001) | (0.002) | (0.001) | |
| Intercept | 41.359*** | 79.200*** | 66.404*** | 72.504*** |
| (4.710) | (6.298) | (12.946) | (6.205) | |
| Observations | 16 | 16 | 16 | 46 |
| R2 | 0.858 | 0.197 | 0.275 | 0.050 |
| Adjusted R2 | 0.836 | 0.073 | 0.163 | 0.005 |
| Residual Std. Error | 8.049 (df = 13) | 10.764 (df = 13) | 22.124 (df = 13) | 18.004 (df = 43) |
| F Statistic | 39.118*** (df = 2; 13) | 1.594 (df = 2; 13) | 2.460 (df = 2; 13) | 1.123 (df = 2; 43) |
| Note: | p<0.1; p<0.05; p<0.01 | |||
p.seg.2017.Riversdale.CW
summary.segmented(m.seg.2017.Riversdale.CW)
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = model, seg.Z = ~N_tot)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.N_tot 87.853 28.752
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 78.4850 6.2719 12.514 3.03e-08 ***
## N_tot 0.1899 0.1341 1.416 0.182
## U1.N_tot -0.3721 0.1746 -2.132 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.6 on 12 degrees of freedom
## Multiple R-Squared: 0.281, Adjusted R-squared: 0.1012
##
## Convergence attained in 2 iter. (rel. change 0)
slope(m.seg.2017.Riversdale.CW)
## $N_tot
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 0.18994 0.13410 1.4164 -0.10224 0.482110
## slope2 -0.18218 0.11175 -1.6302 -0.42566 0.061302