Problem 1:

library(psych)
## Warning: package 'psych' was built under R version 3.6.2
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
qtype <- c("E","A","C","N","O", "E","A","C","N","O",
"E","A","C","N","O", "E","A","C","N","O",
"E","A","C","N","O", "E","A","C","N","O",
"E","A","C","N","O", "E","A","C","N","O",
"O","A","C","O")
valence <- c(1,-1,1,1,1, -1,1,-1,-1,1,
1,-1,1,1,1, 1,1,-1,1,1,
-1,1,-1,-1,1, 1,1,-1,-1,-1,
1,-1,1,-1,-1, 1,1,-1,-1,-1,
1,-1,1,-1)
data_raw <- read.csv("bigfive-full.csv")[,4:47]
data_raw[is.na(data_raw)] <- 3
data_raw[1:5,]
data <- data_raw
dimC <- select(data,(1:44)[qtype=="C"])
keyC <- valence[qtype=="C"]

1 - A:

alpha(data)
## Warning in alpha(data): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Q2 Q4 Q6 Q8 Q12 Q14 Q18 Q19 Q21 Q23 Q27 Q29 Q31 Q35 Q37 Q39 Q41 Q43 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: alpha(x = data)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.65      0.68    0.79     0.046 2.1 0.016  3.5 0.28     0.04
## 
##  lower alpha upper     95% confidence boundaries
## 0.62 0.65 0.68 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Q1       0.64      0.67    0.79     0.045 2.0    0.016 0.028 0.039
## Q2       0.64      0.68    0.79     0.047 2.1    0.016 0.029 0.043
## Q3       0.64      0.67    0.79     0.045 2.0    0.016 0.029 0.039
## Q4       0.65      0.68    0.79     0.048 2.1    0.016 0.028 0.042
## Q5       0.63      0.66    0.78     0.044 2.0    0.017 0.028 0.039
## Q6       0.65      0.68    0.79     0.048 2.2    0.016 0.028 0.044
## Q7       0.64      0.67    0.79     0.045 2.0    0.016 0.029 0.039
## Q8       0.64      0.68    0.79     0.047 2.1    0.016 0.029 0.044
## Q9       0.65      0.68    0.79     0.047 2.1    0.016 0.028 0.040
## Q10      0.63      0.66    0.78     0.043 1.9    0.017 0.029 0.038
## Q11      0.64      0.67    0.78     0.045 2.0    0.017 0.028 0.039
## Q12      0.64      0.68    0.79     0.047 2.1    0.016 0.029 0.044
## Q13      0.64      0.67    0.79     0.045 2.0    0.016 0.029 0.039
## Q14      0.64      0.68    0.79     0.046 2.1    0.016 0.028 0.042
## Q15      0.63      0.66    0.78     0.043 2.0    0.017 0.029 0.037
## Q16      0.63      0.67    0.78     0.044 2.0    0.017 0.028 0.039
## Q17      0.64      0.68    0.79     0.046 2.1    0.016 0.029 0.039
## Q18      0.65      0.68    0.80     0.048 2.2    0.016 0.029 0.043
## Q19      0.64      0.68    0.79     0.046 2.1    0.016 0.028 0.042
## Q20      0.63      0.66    0.78     0.043 1.9    0.017 0.029 0.038
## Q21      0.65      0.68    0.79     0.048 2.2    0.016 0.028 0.044
## Q22      0.64      0.67    0.79     0.046 2.1    0.016 0.029 0.039
## Q23      0.65      0.68    0.79     0.048 2.2    0.016 0.028 0.044
## Q24      0.65      0.68    0.79     0.047 2.1    0.016 0.028 0.039
## Q25      0.63      0.66    0.78     0.044 2.0    0.017 0.028 0.039
## Q26      0.64      0.68    0.79     0.046 2.1    0.016 0.029 0.039
## Q27      0.65      0.68    0.79     0.048 2.1    0.016 0.029 0.044
## Q28      0.64      0.67    0.79     0.045 2.0    0.017 0.029 0.039
## Q29      0.65      0.68    0.79     0.048 2.1    0.016 0.028 0.043
## Q30      0.64      0.67    0.78     0.045 2.0    0.017 0.029 0.038
## Q31      0.65      0.68    0.79     0.047 2.1    0.016 0.028 0.044
## Q32      0.64      0.67    0.78     0.045 2.0    0.016 0.028 0.039
## Q33      0.64      0.67    0.79     0.045 2.0    0.016 0.029 0.039
## Q34      0.64      0.68    0.79     0.046 2.1    0.016 0.029 0.040
## Q35      0.65      0.68    0.80     0.048 2.2    0.016 0.029 0.044
## Q36      0.64      0.67    0.79     0.046 2.1    0.016 0.028 0.039
## Q37      0.64      0.68    0.79     0.047 2.1    0.016 0.029 0.043
## Q38      0.64      0.67    0.79     0.045 2.0    0.016 0.029 0.039
## Q39      0.64      0.68    0.79     0.047 2.1    0.016 0.028 0.044
## Q40      0.63      0.66    0.78     0.044 2.0    0.017 0.029 0.038
## Q41      0.66      0.69    0.80     0.049 2.2    0.015 0.029 0.044
## Q42      0.64      0.67    0.79     0.045 2.0    0.016 0.029 0.039
## Q43      0.64      0.68    0.79     0.047 2.1    0.016 0.029 0.043
## Q44      0.64      0.67    0.79     0.045 2.0    0.017 0.029 0.040
## 
##  Item statistics 
##        n raw.r  std.r  r.cor r.drop mean   sd
## Q1  1017 0.295  0.306  0.297  0.202  3.4 1.19
## Q2  1017 0.206  0.160  0.109  0.113  2.9 1.15
## Q3  1017 0.293  0.360  0.343  0.229  4.2 0.83
## Q4  1017 0.195  0.134  0.091  0.098  2.3 1.21
## Q5  1017 0.386  0.429  0.431  0.315  3.8 0.98
## Q6  1017 0.123  0.092  0.050  0.026  3.3 1.18
## Q7  1017 0.270  0.329  0.303  0.200  4.0 0.90
## Q8  1017 0.262  0.208  0.170  0.169  3.0 1.17
## Q9  1017 0.135  0.169  0.137  0.039  3.5 1.17
## Q10 1017 0.430  0.480  0.474  0.375  4.4 0.79
## Q11 1017 0.330  0.366  0.359  0.246  3.6 1.10
## Q12 1017 0.201  0.154  0.104  0.114  2.0 1.08
## Q13 1017 0.270  0.339  0.320  0.210  4.4 0.78
## Q14 1017 0.288  0.244  0.214  0.203  3.4 1.09
## Q15 1017 0.431  0.466  0.458  0.363  3.8 0.97
## Q16 1017 0.359  0.397  0.400  0.280  3.6 1.06
## Q17 1017 0.215  0.244  0.205  0.129  3.9 1.08
## Q18 1017 0.159  0.099  0.047  0.052  2.8 1.31
## Q19 1017 0.266  0.220  0.198  0.162  3.3 1.32
## Q20 1017 0.445  0.475  0.478  0.376  4.1 0.99
## Q21 1017 0.126  0.099  0.066  0.024  3.3 1.25
## Q22 1017 0.263  0.286  0.248  0.181  4.0 1.04
## Q23 1017 0.188  0.122  0.074  0.086  3.0 1.26
## Q24 1017 0.126  0.164  0.129  0.031  3.6 1.17
## Q25 1017 0.404  0.440  0.440  0.330  3.7 1.03
## Q26 1017 0.233  0.238  0.204  0.138  3.3 1.18
## Q27 1017 0.189  0.133  0.080  0.090  2.9 1.22
## Q28 1017 0.328  0.375  0.356  0.252  4.0 1.01
## Q29 1017 0.194  0.139  0.091  0.094  3.3 1.24
## Q30 1017 0.329  0.347  0.333  0.244  3.9 1.12
## Q31 1017 0.198  0.151  0.119  0.102  3.4 1.19
## Q32 1017 0.290  0.338  0.326  0.213  4.1 0.99
## Q33 1017 0.304  0.357  0.336  0.233  4.0 0.91
## Q34 1017 0.204  0.238  0.205  0.119  3.7 1.06
## Q35 1017 0.144  0.113  0.047  0.044  3.2 1.23
## Q36 1017 0.254  0.287  0.269  0.162  3.6 1.16
## Q37 1017 0.233  0.173  0.136  0.132  2.7 1.26
## Q38 1017 0.268  0.312  0.285  0.183  3.8 1.08
## Q39 1017 0.223  0.165  0.130  0.122  3.2 1.26
## Q40 1017 0.404  0.439  0.435  0.334  4.0 0.98
## Q41 1017 0.025 -0.012 -0.085 -0.088  2.8 1.38
## Q42 1017 0.279  0.325  0.297  0.206  4.1 0.94
## Q43 1017 0.250  0.207  0.166  0.160  3.5 1.14
## Q44 1017 0.334  0.338  0.317  0.236  3.3 1.28
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## Q1  0.07 0.19 0.20 0.35 0.20    0
## Q2  0.12 0.28 0.24 0.28 0.07    0
## Q3  0.01 0.04 0.11 0.44 0.41    0
## Q4  0.32 0.29 0.18 0.17 0.05    0
## Q5  0.02 0.11 0.16 0.48 0.24    0
## Q6  0.08 0.19 0.19 0.40 0.14    0
## Q7  0.01 0.06 0.13 0.48 0.32    0
## Q8  0.11 0.28 0.17 0.37 0.07    0
## Q9  0.06 0.18 0.18 0.38 0.20    0
## Q10 0.00 0.03 0.07 0.37 0.52    0
## Q11 0.03 0.16 0.20 0.38 0.22    0
## Q12 0.44 0.30 0.13 0.11 0.02    0
## Q13 0.00 0.03 0.06 0.33 0.57    0
## Q14 0.05 0.18 0.19 0.44 0.14    0
## Q15 0.01 0.09 0.21 0.42 0.26    0
## Q16 0.03 0.13 0.23 0.38 0.23    0
## Q17 0.03 0.10 0.11 0.41 0.34    0
## Q18 0.20 0.30 0.14 0.24 0.11    0
## Q19 0.11 0.20 0.14 0.33 0.22    0
## Q20 0.02 0.08 0.13 0.39 0.39    0
## Q21 0.10 0.21 0.16 0.36 0.17    0
## Q22 0.03 0.08 0.10 0.41 0.38    0
## Q23 0.14 0.25 0.16 0.34 0.10    0
## Q24 0.05 0.16 0.19 0.35 0.25    0
## Q25 0.02 0.13 0.21 0.43 0.21    0
## Q26 0.08 0.19 0.21 0.37 0.16    0
## Q27 0.16 0.27 0.21 0.29 0.08    0
## Q28 0.02 0.08 0.14 0.40 0.36    0
## Q29 0.10 0.20 0.16 0.38 0.16    0
## Q30 0.04 0.10 0.13 0.37 0.36    0
## Q31 0.08 0.18 0.13 0.45 0.16    0
## Q32 0.02 0.07 0.12 0.37 0.43    0
## Q33 0.01 0.07 0.12 0.46 0.34    0
## Q34 0.03 0.13 0.16 0.44 0.24    0
## Q35 0.10 0.24 0.19 0.32 0.14    0
## Q36 0.04 0.18 0.15 0.38 0.25    0
## Q37 0.22 0.27 0.17 0.29 0.06    0
## Q38 0.03 0.12 0.13 0.43 0.29    0
## Q39 0.10 0.23 0.17 0.34 0.16    0
## Q40 0.03 0.07 0.10 0.46 0.34    0
## Q41 0.24 0.23 0.13 0.29 0.12    0
## Q42 0.02 0.06 0.12 0.44 0.35    0
## Q43 0.05 0.19 0.18 0.40 0.18    0
## Q44 0.11 0.20 0.18 0.33 0.18    0
alpha(data,check.keys=TRUE)
## Warning in alpha(data, check.keys = TRUE): Some items were negatively correlated with total scale and were automatically reversed.
##  This is indicated by a negative sign for the variable name.
## 
## Reliability analysis   
## Call: alpha(x = data, check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.85      0.86     0.9      0.12 6.1 0.0065  3.5 0.41     0.11
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.85 0.87 
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Q1        0.85      0.86     0.9      0.12 6.0   0.0067 0.015  0.11
## Q2-       0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q3        0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q4-       0.85      0.85     0.9      0.12 5.9   0.0068 0.016  0.11
## Q5        0.85      0.85     0.9      0.12 5.9   0.0068 0.016  0.11
## Q6-       0.85      0.86     0.9      0.12 6.0   0.0066 0.015  0.11
## Q7        0.85      0.85     0.9      0.12 5.9   0.0067 0.016  0.11
## Q8-       0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q9        0.85      0.86     0.9      0.12 5.9   0.0068 0.016  0.11
## Q10       0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q11       0.85      0.85     0.9      0.12 5.8   0.0068 0.016  0.11
## Q12-      0.85      0.86     0.9      0.12 6.1   0.0066 0.016  0.11
## Q13       0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q14-      0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q15       0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q16       0.85      0.85     0.9      0.12 5.8   0.0068 0.015  0.11
## Q17       0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q18-      0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q19-      0.85      0.86     0.9      0.12 6.0   0.0067 0.015  0.11
## Q20       0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q21-      0.85      0.86     0.9      0.12 6.1   0.0066 0.015  0.11
## Q22       0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q23-      0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q24       0.85      0.86     0.9      0.12 5.9   0.0068 0.016  0.11
## Q25       0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q26       0.85      0.86     0.9      0.12 6.1   0.0066 0.015  0.11
## Q27-      0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q28       0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q29-      0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q30       0.85      0.86     0.9      0.12 6.1   0.0066 0.015  0.11
## Q31-      0.85      0.86     0.9      0.12 5.9   0.0068 0.016  0.11
## Q32       0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q33       0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q34       0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q35-      0.86      0.86     0.9      0.13 6.2   0.0065 0.016  0.12
## Q36       0.85      0.85     0.9      0.12 5.8   0.0068 0.016  0.11
## Q37-      0.85      0.86     0.9      0.12 6.0   0.0067 0.016  0.11
## Q38       0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q39-      0.85      0.86     0.9      0.12 5.9   0.0068 0.016  0.11
## Q40       0.85      0.86     0.9      0.12 6.0   0.0066 0.016  0.11
## Q41-      0.86      0.86     0.9      0.13 6.2   0.0064 0.016  0.11
## Q42       0.85      0.86     0.9      0.12 5.9   0.0067 0.016  0.11
## Q43-      0.85      0.86     0.9      0.12 6.1   0.0066 0.016  0.11
## Q44       0.85      0.86     0.9      0.12 6.1   0.0065 0.016  0.11
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean   sd
## Q1   1017  0.37  0.37  0.36   0.31  3.4 1.19
## Q2-  1017  0.36  0.35  0.32   0.30  3.1 1.15
## Q3   1017  0.40  0.44  0.42   0.36  4.2 0.83
## Q4-  1017  0.48  0.46  0.44   0.42  3.7 1.21
## Q5   1017  0.47  0.48  0.47   0.42  3.8 0.98
## Q6-  1017  0.35  0.33  0.31   0.29  2.7 1.18
## Q7   1017  0.44  0.46  0.44   0.40  4.0 0.90
## Q8-  1017  0.33  0.32  0.29   0.27  3.0 1.17
## Q9   1017  0.45  0.44  0.43   0.40  3.5 1.17
## Q10  1017  0.33  0.37  0.35   0.29  4.4 0.79
## Q11  1017  0.53  0.53  0.52   0.48  3.6 1.10
## Q12- 1017  0.26  0.27  0.24   0.21  4.0 1.08
## Q13  1017  0.39  0.42  0.41   0.35  4.4 0.78
## Q14- 1017  0.40  0.37  0.36   0.35  2.6 1.09
## Q15  1017  0.32  0.35  0.33   0.27  3.8 0.97
## Q16  1017  0.54  0.54  0.54   0.50  3.6 1.06
## Q17  1017  0.33  0.34  0.32   0.28  3.9 1.08
## Q18- 1017  0.35  0.34  0.31   0.28  3.2 1.31
## Q19- 1017  0.39  0.36  0.34   0.32  2.7 1.32
## Q20  1017  0.35  0.37  0.36   0.30  4.1 0.99
## Q21- 1017  0.32  0.29  0.28   0.26  2.7 1.25
## Q22  1017  0.30  0.31  0.28   0.25  4.0 1.04
## Q23- 1017  0.43  0.41  0.39   0.37  3.0 1.26
## Q24  1017  0.46  0.45  0.44   0.41  3.6 1.17
## Q25  1017  0.41  0.43  0.42   0.37  3.7 1.03
## Q26  1017  0.29  0.28  0.26   0.23  3.3 1.18
## Q27- 1017  0.38  0.37  0.34   0.32  3.1 1.22
## Q28  1017  0.36  0.39  0.36   0.31  4.0 1.01
## Q29- 1017  0.42  0.40  0.38   0.36  2.7 1.24
## Q30  1017  0.28  0.28  0.26   0.22  3.9 1.12
## Q31- 1017  0.46  0.43  0.42   0.41  2.6 1.19
## Q32  1017  0.39  0.41  0.40   0.34  4.1 0.99
## Q33  1017  0.42  0.44  0.42   0.37  4.0 0.91
## Q34  1017  0.38  0.38  0.36   0.32  3.7 1.06
## Q35- 1017  0.19  0.18  0.14   0.12  2.8 1.23
## Q36  1017  0.51  0.51  0.50   0.46  3.6 1.16
## Q37- 1017  0.37  0.35  0.33   0.30  3.3 1.26
## Q38  1017  0.41  0.42  0.40   0.36  3.8 1.08
## Q39- 1017  0.47  0.45  0.43   0.42  2.8 1.26
## Q40  1017  0.32  0.35  0.33   0.27  4.0 0.98
## Q41- 1017  0.19  0.18  0.15   0.12  3.2 1.38
## Q42  1017  0.40  0.42  0.39   0.35  4.1 0.94
## Q43- 1017  0.30  0.29  0.26   0.24  2.5 1.14
## Q44  1017  0.25  0.25  0.23   0.18  3.3 1.28
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## Q1  0.07 0.19 0.20 0.35 0.20    0
## Q2  0.12 0.28 0.24 0.28 0.07    0
## Q3  0.01 0.04 0.11 0.44 0.41    0
## Q4  0.32 0.29 0.18 0.17 0.05    0
## Q5  0.02 0.11 0.16 0.48 0.24    0
## Q6  0.08 0.19 0.19 0.40 0.14    0
## Q7  0.01 0.06 0.13 0.48 0.32    0
## Q8  0.11 0.28 0.17 0.37 0.07    0
## Q9  0.06 0.18 0.18 0.38 0.20    0
## Q10 0.00 0.03 0.07 0.37 0.52    0
## Q11 0.03 0.16 0.20 0.38 0.22    0
## Q12 0.44 0.30 0.13 0.11 0.02    0
## Q13 0.00 0.03 0.06 0.33 0.57    0
## Q14 0.05 0.18 0.19 0.44 0.14    0
## Q15 0.01 0.09 0.21 0.42 0.26    0
## Q16 0.03 0.13 0.23 0.38 0.23    0
## Q17 0.03 0.10 0.11 0.41 0.34    0
## Q18 0.20 0.30 0.14 0.24 0.11    0
## Q19 0.11 0.20 0.14 0.33 0.22    0
## Q20 0.02 0.08 0.13 0.39 0.39    0
## Q21 0.10 0.21 0.16 0.36 0.17    0
## Q22 0.03 0.08 0.10 0.41 0.38    0
## Q23 0.14 0.25 0.16 0.34 0.10    0
## Q24 0.05 0.16 0.19 0.35 0.25    0
## Q25 0.02 0.13 0.21 0.43 0.21    0
## Q26 0.08 0.19 0.21 0.37 0.16    0
## Q27 0.16 0.27 0.21 0.29 0.08    0
## Q28 0.02 0.08 0.14 0.40 0.36    0
## Q29 0.10 0.20 0.16 0.38 0.16    0
## Q30 0.04 0.10 0.13 0.37 0.36    0
## Q31 0.08 0.18 0.13 0.45 0.16    0
## Q32 0.02 0.07 0.12 0.37 0.43    0
## Q33 0.01 0.07 0.12 0.46 0.34    0
## Q34 0.03 0.13 0.16 0.44 0.24    0
## Q35 0.10 0.24 0.19 0.32 0.14    0
## Q36 0.04 0.18 0.15 0.38 0.25    0
## Q37 0.22 0.27 0.17 0.29 0.06    0
## Q38 0.03 0.12 0.13 0.43 0.29    0
## Q39 0.10 0.23 0.17 0.34 0.16    0
## Q40 0.03 0.07 0.10 0.46 0.34    0
## Q41 0.24 0.23 0.13 0.29 0.12    0
## Q42 0.02 0.06 0.12 0.44 0.35    0
## Q43 0.05 0.19 0.18 0.40 0.18    0
## Q44 0.11 0.20 0.18 0.33 0.18    0
glb(data)
## Warning in ICLUST.cluster(r.mat, ICLUST.options, smc.items): Clusters formed as
## requested do not meet the alpha and beta criteria. Perhaps you should rethink
## the number of cluster settings.
## Warning in ICLUST.cluster(r.mat, ICLUST.options, smc.items): Clusters formed as
## requested do not meet the alpha and beta criteria. Perhaps you should rethink
## the number of cluster settings.
## Loading required namespace: GPArotation
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : I
## am sorry, to do these rotations requires the GPArotation package to be installed
## $beta
## [1] 0.3966681
## 
## $beta.factor
## [1] -0.5935149
## 
## $alpha.pc
## [1] 0.8486391
## 
## $glb.max
## [1] 0.6553752
## 
## $glb.IC
## [1] 0.5146044
## 
## $glb.Km
## [1] -1.21942
## 
## $glb.Fa
## [1] 0.6553752
## 
## $r.smc
## [1] 0.7931879
## 
## $tenberge
## $tenberge$mu0
## [1] 0.6795968
## 
## $tenberge$mu1
## [1] 0.7229027
## 
## $tenberge$mu2
## [1] 0.7234902
## 
## $tenberge$mu3
## [1] 0.7235253
## 
## 
## $keys
##     IC1 IC2 ICr1 ICr2 K1 K2 F1 F2 f1 f2
## Q1    1   0    0    1  0  1  0  1  1  0
## Q2   -1   0    1    0  1  0  1  0  0  1
## Q3    1   0    1    0  0  1  0  1  1  0
## Q4   -1   0    1    0  1  0  1  0  0  1
## Q5    0   1    1    0  0  1  0  1  1  0
## Q6   -1   0    1    0  1  0  1  0  0  1
## Q7    1   0    1    0  0  1  1  0  1  0
## Q8   -1   0    1    0  1  0  0  1  0  1
## Q9    1   0    1    0  0  1  1  0  1  0
## Q10   0   1    1    0  0  1  0  1  0  1
## Q11   1   0    1    0  0  1  1  0  1  0
## Q12  -1   0    1    0  1  0  0  1  0  1
## Q13   1   0    1    0  0  1  0  1  1  0
## Q14  -1   0    1    0  1  0  0  1  0  1
## Q15   0   1    1    0  0  1  1  0  0  1
## Q16   1   0    1    0  0  1  0  1  1  0
## Q17   1   0    1    0  0  1  0  1  1  0
## Q18  -1   0    1    0  1  0  0  1  0  1
## Q19  -1   0    1    0  1  0  1  0  0  1
## Q20   0   1    1    0  0  1  1  0  0  1
## Q21  -1   0    0    1  1  0  1  0  0  1
## Q22   1   0    1    0  0  1  1  0  1  0
## Q23  -1   0    1    0  1  0  0  1  0  1
## Q24   1   0    1    0  0  1  1  0  1  0
## Q25   0   1    1    0  0  1  1  0  1  0
## Q26   1   0    1    0  0  1  0  1  1  0
## Q27  -1   0    1    0  1  0  0  1  0  1
## Q28   1   0    1    0  0  1  0  1  1  0
## Q29  -1   0    1    0  1  0  1  0  0  1
## Q30   0   1    1    0  0  1  0  1  0  1
## Q31  -1   0    1    0  1  0  1  0  0  1
## Q32   1   0    1    0  0  1  1  0  1  0
## Q33   1   0    1    0  0  1  0  1  1  0
## Q34   1   0    1    0  0  1  1  0  1  0
## Q35   0  -1    1    0  1  0  1  0  0  1
## Q36   1   0    1    0  0  1  0  1  1  0
## Q37  -1   0    1    0  1  0  0  1  0  1
## Q38   1   0    1    0  0  1  1  0  1  0
## Q39  -1   0    1    0  1  0  0  1  0  1
## Q40   0   1    1    0  0  1  1  0  0  1
## Q41   0  -1    1    0  1  0  0  1  1  0
## Q42   1   0    1    0  0  1  0  1  1  0
## Q43  -1   0    1    0  1  0  1  0  0  1
## Q44   0   1    1    0  0  1  1  0  0  1
Cor_data<-cor(data)
eigen(Cor_data)
## eigen() decomposition
## $values
##  [1] 6.6067242 3.6948136 3.4899727 2.4477353 2.3457026 1.9480589 1.6516367
##  [8] 1.1717756 1.0783005 0.9057664 0.8926443 0.8230065 0.7836752 0.7567056
## [15] 0.7417932 0.7196240 0.7099749 0.6750394 0.6567385 0.6475501 0.6384098
## [22] 0.6257552 0.6095086 0.5990372 0.5891287 0.5604190 0.5435817 0.5250084
## [29] 0.5099948 0.4951715 0.4806332 0.4538466 0.4427432 0.4347317 0.4324418
## [36] 0.4129808 0.4018597 0.3957799 0.3874425 0.3796720 0.3647115 0.3373966
## [43] 0.3280252 0.3044820
## 
## $vectors
##              [,1]         [,2]         [,3]         [,4]         [,5]
##  [1,] -0.15509301  0.090130855  0.317311057  0.178734002  0.063068616
##  [2,]  0.12911572  0.131409109  0.078656681 -0.148007725  0.160456796
##  [3,] -0.17483139  0.056712489 -0.144693003  0.022511656  0.269135238
##  [4,]  0.18862762  0.217503986 -0.010871757 -0.006692325  0.047585477
##  [5,] -0.18651518  0.200559195  0.067583758 -0.225327724 -0.029864860
##  [6,]  0.13196472  0.055418363 -0.327755992 -0.139946731  0.030127697
##  [7,] -0.18030133  0.058314375 -0.140467304  0.155187074 -0.013872724
##  [8,]  0.11656627  0.161157062  0.138416009 -0.012761976 -0.138867648
##  [9,] -0.18491488 -0.165967346 -0.030154096 -0.262744368 -0.037925558
## [10,] -0.13544829  0.251025693 -0.064615657 -0.097796607 -0.008326188
## [11,] -0.22420614  0.044453073  0.179596866  0.049399625  0.082323483
## [12,]  0.08733390  0.077927477  0.234217764 -0.141652624  0.132895322
## [13,] -0.16760981  0.051971036 -0.177047243  0.085749586  0.261431846
## [14,]  0.14524542  0.242720418 -0.003124966  0.141137144  0.201193514
## [15,] -0.13083064  0.201217088 -0.066933834 -0.217074791  0.103163911
## [16,] -0.22798436  0.091083309  0.207533746  0.108838116  0.050702061
## [17,] -0.13069184  0.004740946 -0.107763002  0.127840225 -0.127469347
## [18,]  0.13246161  0.150252422  0.108635136 -0.036391426 -0.258198644
## [19,]  0.14454089  0.264164278 -0.044940179  0.258467372  0.153517759
## [20,] -0.13658794  0.275853298  0.016033258 -0.167085707 -0.091832851
## [21,]  0.11846819  0.034164429 -0.357669594 -0.164890481  0.041728836
## [22,] -0.12365685  0.004678391 -0.053939535  0.146316000  0.020518480
## [23,]  0.16044646  0.130151930  0.050256369 -0.010362632 -0.193124470
## [24,] -0.18888489 -0.162726366 -0.056892846 -0.198925125 -0.022566297
## [25,] -0.16722491  0.196186151  0.055390628 -0.262391122 -0.011765447
## [26,] -0.11983815  0.028685878  0.282667673 -0.068052171  0.186506537
## [27,]  0.13427769  0.066848973  0.073976474 -0.296445400  0.124762059
## [28,] -0.15061335  0.083804204 -0.175116354  0.013764364  0.171925966
## [29,]  0.15327050  0.165885439  0.091162200  0.091697355  0.216648529
## [30,] -0.08562476  0.279290518 -0.074464943 -0.004299504 -0.218131239
## [31,]  0.16944266  0.093865830 -0.250256877 -0.081044321  0.119131637
## [32,] -0.15232634  0.102425790 -0.217672843  0.211826449 -0.115693058
## [33,] -0.18146180  0.016960903 -0.065359827 -0.063358649  0.294729226
## [34,] -0.15717677 -0.089818172 -0.027383629 -0.291004874  0.027886773
## [35,]  0.04866450 -0.032851991 -0.049189232  0.102502151  0.220656910
## [36,] -0.20991420  0.037793279  0.226060894  0.170086003  0.019362508
## [37,]  0.12137085  0.068035689  0.204245604 -0.179454652  0.237385176
## [38,] -0.16641683  0.051626479 -0.103820331  0.072621028  0.156514506
## [39,]  0.17287895  0.171089854 -0.058220460  0.135020282  0.182454779
## [40,] -0.11849561  0.278048361 -0.074855896 -0.065880104 -0.114711057
## [41,]  0.04212471 -0.182148518  0.050054998 -0.066154720  0.263825126
## [42,] -0.16323010  0.067724489 -0.075907100  0.208062452 -0.050563243
## [43,]  0.10392615  0.171070131  0.117523812  0.015885385 -0.104093684
## [44,] -0.07599267  0.248856434 -0.052076442 -0.073929766 -0.149297371
##                [,6]         [,7]          [,8]         [,9]        [,10]
##  [1,] -0.0697497189 -0.019463738 -0.0447783532  0.084492631  0.087230843
##  [2,]  0.0531103017 -0.304513072  0.0926770602  0.037134679  0.062673612
##  [3,]  0.0118938138  0.022265576  0.2691388414  0.224697507 -0.029477165
##  [4,]  0.0615865983  0.014076543 -0.1972241824 -0.093510669  0.083701788
##  [5,]  0.0594476538  0.230762790 -0.0179401267 -0.140579606  0.124481324
##  [6,] -0.0720497007 -0.056144815 -0.1134008446 -0.029560589  0.078178013
##  [7,] -0.1637051422  0.102012603  0.0465701764 -0.006792418  0.022103411
##  [8,] -0.2773900900 -0.251480100  0.0311814200  0.085951451 -0.151451463
##  [9,] -0.1964392351 -0.146847876 -0.0898220274  0.111339996  0.014263000
## [10,] -0.0264938576  0.012456112  0.3209327861  0.112562773 -0.070274798
## [11,] -0.1328297032  0.097544327 -0.0802408568 -0.072786437  0.015175396
## [12,] -0.0197774849 -0.220683717 -0.2497453845 -0.106465918  0.037969403
## [13,]  0.0089969097 -0.008345515  0.2357304056  0.102993030 -0.083653145
## [14,]  0.0106915872 -0.083593637  0.0383987845 -0.108774254  0.051570248
## [15,]  0.0296837828  0.058035425 -0.0005098273 -0.145761360  0.298981920
## [16,] -0.1171913720  0.061136438 -0.0695727316 -0.091021609 -0.008074902
## [17,] -0.3322984954  0.181579688 -0.1241186511 -0.150559863 -0.122267257
## [18,] -0.1754958384 -0.149455583  0.1206529349 -0.077461438  0.184638645
## [19,]  0.0372760410 -0.026574032  0.0553231429 -0.058911261  0.090772653
## [20,] -0.0071766592  0.236483531  0.0102703720  0.029454905  0.073437545
## [21,] -0.1234844614  0.016589876 -0.1330074708 -0.098914057  0.005486661
## [22,] -0.3239312076  0.110799349 -0.2630341947 -0.188364306 -0.327912466
## [23,] -0.2807911251 -0.186320035  0.0268842236  0.059118343  0.145258195
## [24,] -0.1972365918 -0.132936222 -0.0219537466  0.151170134  0.068369887
## [25,]  0.0175436145  0.196490061 -0.0055887113 -0.130661082  0.120667939
## [26,]  0.0489658722 -0.053819194 -0.0527394241 -0.115326157  0.013860087
## [27,] -0.1014550044 -0.061005497 -0.0277120702 -0.107758508 -0.226503581
## [28,]  0.0584445304 -0.312947556 -0.0065737966 -0.025458281 -0.034996616
## [29,] -0.0004763241  0.148805196 -0.0418570360  0.152077587 -0.153641887
## [30,]  0.1516220937 -0.013770222 -0.2130664235  0.276990926 -0.139667900
## [31,] -0.2250021621  0.119605627 -0.0013068707 -0.066503640 -0.141693560
## [32,] -0.1224897306 -0.210591051 -0.0294583940 -0.147678752  0.084071497
## [33,] -0.0082826940 -0.004641053 -0.0088950306  0.076123042 -0.114995510
## [34,] -0.1747720012 -0.065321724  0.0997423101  0.217489740  0.093215820
## [35,] -0.1480778175  0.010805135 -0.3993161246  0.449797200  0.405136917
## [36,] -0.0416475139 -0.088386992 -0.0287322306  0.021454372  0.047909642
## [37,] -0.1665393854 -0.032078374 -0.0009253196  0.089817241 -0.436083141
## [38,]  0.1140541707 -0.329659727 -0.1763297776 -0.078572042 -0.001203500
## [39,] -0.1486615352  0.235668756  0.0362254031  0.053672488  0.149528696
## [40,]  0.0970906285 -0.196591458  0.0755503328 -0.230042489 -0.039244291
## [41,] -0.2226095809  0.029462842 -0.0432305426 -0.309317295  0.254950523
## [42,] -0.1488883889 -0.242012999  0.0547724826 -0.030069649 -0.023098203
## [43,] -0.3060232487  0.068612229  0.2502436255  0.239542647  0.090115371
## [44,]  0.1619702482  0.027648983 -0.4137926990  0.239365244 -0.141478886
##              [,11]         [,12]         [,13]        [,14]        [,15]
##  [1,] -0.037583993 -0.0137416188 -0.0216760821 -0.093387003  0.053805230
##  [2,] -0.012491791 -0.2295652416  0.1812617040 -0.176403416  0.236356775
##  [3,]  0.077548867  0.0605177203  0.0233566846  0.041164597 -0.137852937
##  [4,]  0.435269140  0.0082863346 -0.2283589396 -0.028314467 -0.075410853
##  [5,] -0.112006755 -0.0429784466 -0.0496675759  0.007192108 -0.140403781
##  [6,] -0.174321813  0.1486479265  0.0597411433 -0.143681312 -0.115243862
##  [7,]  0.354984617 -0.1485669287 -0.1699089550 -0.108745143 -0.105240191
##  [8,] -0.017679023  0.0261077476 -0.0019911936  0.186443548 -0.234142637
##  [9,]  0.052367893  0.1273851024 -0.0594531059 -0.127315304  0.091310153
## [10,]  0.078447739  0.2272180050  0.1281402966  0.239843450  0.191685159
## [11,] -0.260706780  0.2691032840  0.0372888784 -0.048952776 -0.033771287
## [12,]  0.088235579  0.1239384457  0.1357377257  0.006052083  0.032985686
## [13,]  0.106790501 -0.0005213965  0.0989439682  0.164554173 -0.047933934
## [14,] -0.061758651  0.0884892149 -0.2087771603  0.182993625  0.217798338
## [15,]  0.173257055 -0.0522987979  0.3997293772 -0.077044383  0.033835517
## [16,] -0.233764651  0.0821201238 -0.0349085828 -0.145136888 -0.140702328
## [17,]  0.145900674 -0.1240807803  0.0655573329  0.149155153  0.009272677
## [18,]  0.162864650  0.0567012940 -0.0332097184  0.207921517 -0.063129123
## [19,] -0.050169955 -0.1086547175 -0.0848705110 -0.154181738  0.175630641
## [20,] -0.103803920  0.0500785081 -0.1321448374  0.197455776 -0.058354134
## [21,] -0.117378088  0.1849341197  0.0394701067 -0.160956001 -0.049808419
## [22,]  0.137121939 -0.0744423483  0.3542709427  0.098168110  0.165670195
## [23,] -0.016276621 -0.1683779320  0.1398568534 -0.055415043  0.008240733
## [24,] -0.150914580 -0.0359786788 -0.1559205340  0.171355484  0.239864978
## [25,] -0.078298963 -0.2453201704 -0.0998094129  0.041820066 -0.112621406
## [26,]  0.125169804  0.1165413679  0.2059775477 -0.164390441  0.005854049
## [27,] -0.024530597 -0.0645299673 -0.3313348472 -0.127997539 -0.309032837
## [28,] -0.046346003  0.1815016110 -0.0343201737  0.246386954 -0.257021103
## [29,]  0.284980363  0.2425469540 -0.0258522429 -0.069198882 -0.174792068
## [30,]  0.022047817  0.1548138167 -0.0263867826 -0.109697118  0.151339992
## [31,] -0.161149127  0.1205186200  0.0015534621 -0.127341901  0.087691882
## [32,]  0.066792499  0.0168513223 -0.0503009752 -0.225894135 -0.114681841
## [33,]  0.003475302 -0.4986334495 -0.1277935591 -0.166555489  0.021128294
## [34,]  0.298239012  0.1843443768 -0.1024636203 -0.250146264  0.172663461
## [35,] -0.052914664 -0.1526526282  0.0115144812  0.287094063 -0.125560753
## [36,]  0.004318271  0.2070003877 -0.1435905322 -0.128184755  0.068108713
## [37,] -0.072001292 -0.1158030038 -0.0120021131  0.130952751  0.093569727
## [38,] -0.106986520 -0.0379766086  0.1977175488  0.034891950 -0.235250038
## [39,] -0.225784979  0.0934405959 -0.0004774675 -0.092341806  0.225950952
## [40,] -0.042983275 -0.1267635381 -0.0443632778  0.158041936  0.185758350
## [41,]  0.126939508  0.0859472533 -0.2200619794  0.221119770  0.180332595
## [42,] -0.103362694 -0.0476431624 -0.2900125179 -0.142376982  0.113909037
## [43,] -0.079760511 -0.1138956406  0.1727162732 -0.172579537 -0.212355949
## [44,]  0.037017088 -0.0435959457 -0.0743106473  0.022717888  0.185286475
##              [,16]        [,17]        [,18]        [,19]        [,20]
##  [1,]  0.101054439 -0.068800150 -0.057827412  0.025653106 -0.067102630
##  [2,]  0.239035102 -0.249440633 -0.010322109  0.043454145 -0.339755951
##  [3,]  0.074040498 -0.156556285  0.257084457 -0.025437096 -0.187910435
##  [4,]  0.038343470  0.103329582  0.206615829  0.090821365  0.004805310
##  [5,] -0.177427568 -0.082138380 -0.019906811 -0.120678987 -0.075861139
##  [6,] -0.017392351 -0.074334541 -0.060523892 -0.155300991  0.038263670
##  [7,]  0.054619141 -0.423957499 -0.229634643  0.007391114 -0.192222752
##  [8,] -0.020370542  0.119891404  0.001022534  0.175664392  0.099249080
##  [9,]  0.018753308 -0.071972137  0.053761117  0.134260884  0.009224906
## [10,]  0.085887865  0.102616564 -0.089669972 -0.029532071 -0.107153222
## [11,]  0.264018567  0.001888824  0.056778909  0.198002457  0.055733432
## [12,] -0.266157417 -0.397967273  0.025445402  0.349855268  0.011837069
## [13,]  0.145180746  0.048892645  0.045360561 -0.004296391  0.084052314
## [14,] -0.188500084  0.038291897 -0.206464552  0.159513435  0.001584876
## [15,]  0.107130641  0.365609753  0.192038429  0.215984129 -0.075079540
## [16,]  0.169075731 -0.057838043  0.120883932  0.101491773  0.020074826
## [17,]  0.033520676 -0.056610826  0.278639073  0.168933999  0.212959668
## [18,]  0.069924909 -0.126628838  0.255545970 -0.198415910 -0.040994796
## [19,] -0.027658024  0.026534930  0.044448785 -0.049202948  0.116419631
## [20,] -0.040915149 -0.022809703 -0.255610650  0.064111681 -0.104133850
## [21,] -0.088805198  0.058979644  0.118012343 -0.056836561 -0.038738945
## [22,] -0.102669503  0.104536717 -0.162155928 -0.159710680 -0.265955763
## [23,]  0.184250178  0.036618458 -0.125071032 -0.333303291  0.011414785
## [24,] -0.029665563 -0.036447554 -0.105293844  0.002006760 -0.109764421
## [25,] -0.248623527 -0.096336041  0.017879168 -0.160266680 -0.096941749
## [26,] -0.207082100  0.051033846  0.023623797 -0.459449218  0.158780068
## [27,]  0.323215941  0.273480244 -0.051284288  0.006306249 -0.218599148
## [28,] -0.060681544 -0.210991204  0.196178768 -0.220621541  0.152376819
## [29,] -0.094813927  0.060585912 -0.234324781  0.008986627 -0.037882270
## [30,]  0.077348884 -0.025960592 -0.084159450 -0.146864047  0.177636436
## [31,]  0.062223439 -0.104891729 -0.125879426  0.003461637  0.057465332
## [32,]  0.008976685 -0.003120065 -0.125359900  0.062607461 -0.063931847
## [33,]  0.019223832  0.036040376 -0.013770112 -0.001804012  0.367792740
## [34,] -0.190508384  0.113869048 -0.082554412  0.090651272  0.176131471
## [35,] -0.069731889  0.204935795 -0.049176350  0.003588690 -0.098221321
## [36,]  0.086821890  0.185741372 -0.034217154 -0.194448621 -0.049074684
## [37,] -0.131980833 -0.004680913  0.161253490 -0.083595754 -0.022714767
## [38,]  0.023784564  0.014382283 -0.258550944  0.038534392  0.032907037
## [39,] -0.007259207 -0.099357701  0.197218654  0.001542613 -0.020878888
## [40,]  0.010186345  0.127135430 -0.148556418  0.147373668  0.250974578
## [41,]  0.272659831 -0.064676568 -0.106076358 -0.207761063  0.234230856
## [42,] -0.368304189  0.225961228  0.288854910 -0.031012592 -0.259343739
## [43,] -0.117692102 -0.064100793 -0.065290832  0.056771274  0.304805264
## [44,]  0.247066728 -0.126649607  0.209477824 -0.084351736  0.050539886
##              [,21]         [,22]         [,23]        [,24]         [,25]
##  [1,] -0.171428386 -0.2252488243  0.0809724377  0.122181646  0.0985747199
##  [2,]  0.198819449  0.0381601681 -0.1498406266 -0.336656681 -0.3023201421
##  [3,] -0.067508186 -0.2235404173  0.0595782073 -0.105856772  0.1872029576
##  [4,] -0.172052407  0.0095177809  0.1990253583 -0.062574171  0.0128690535
##  [5,] -0.033810153  0.0248344002 -0.0216837675  0.024863422 -0.0514701176
##  [6,] -0.007613818 -0.0600307744 -0.0451503572 -0.039470495  0.2188380999
##  [7,]  0.119806340  0.1127470490  0.2640808479  0.076964361 -0.0058326958
##  [8,]  0.192455928  0.4201946764 -0.1095975218 -0.011950341 -0.0932651353
##  [9,] -0.056116735 -0.0733034663 -0.2213740026 -0.062676653  0.0237537046
## [10,] -0.041400766  0.2661193175  0.2737501840 -0.142677160  0.2951432652
## [11,] -0.069879850  0.0125219158 -0.0686642253 -0.149337669  0.0078217681
## [12,] -0.125286301  0.1111395314  0.0922923895  0.245258817  0.2647953197
## [13,] -0.083365288  0.0973367162 -0.2618429248  0.392909588 -0.1509322185
## [14,]  0.301737640 -0.0716369891 -0.0693122130 -0.056857204  0.0186950041
## [15,]  0.058226890  0.0203231791  0.0673334148  0.145325972 -0.0212373424
## [16,] -0.035372722  0.1346596086 -0.1033168820 -0.082585038  0.1224407563
## [17,]  0.209795642 -0.3133218132  0.0206345148 -0.308949958 -0.0218406216
## [18,] -0.217082827 -0.1341940349 -0.3337120382  0.159057262 -0.1778873020
## [19,]  0.028865377 -0.0709446073 -0.1591993866  0.018570695  0.1399956311
## [20,] -0.069292311  0.0651412480 -0.0983007174  0.062478990 -0.1777203690
## [21,]  0.012937093  0.1206728511 -0.0171387358 -0.004365528 -0.0095110049
## [22,] -0.022245923  0.0278948978 -0.0980894462  0.041790995 -0.0423920967
## [23,] -0.221198927 -0.0233135048 -0.0091079588 -0.066511038  0.3822929175
## [24,]  0.084601303 -0.2495471791  0.0006265156  0.295437716 -0.0115138829
## [25,]  0.018544311  0.0244400383 -0.1587019101 -0.227250727  0.0706932924
## [26,]  0.285842828 -0.0641488944  0.0973870978  0.150469195 -0.0810305935
## [27,]  0.184616242 -0.1932816095  0.1511533323  0.147441751  0.0007539024
## [28,]  0.199506702 -0.0399095888  0.0401293180 -0.071883943  0.0052235469
## [29,] -0.174854787 -0.1996881387 -0.3748666993 -0.109252310 -0.0279206693
## [30,] -0.020563932  0.0599078361  0.0550894808 -0.193184036 -0.1376377984
## [31,] -0.155103641 -0.0558465282  0.1029531541  0.140223408 -0.0560353590
## [32,]  0.237000860  0.0632206965 -0.1883102165  0.132882538  0.1104751620
## [33,] -0.128607129  0.2595589547 -0.1805927860  0.033270045  0.1283506143
## [34,]  0.006527692 -0.0503173306 -0.0620270647 -0.150740456 -0.0808890176
## [35,]  0.099132416 -0.0104458680  0.0310944238 -0.078039609  0.0795593877
## [36,]  0.161525119  0.0072782960  0.0321741452  0.020761587  0.0531624912
## [37,] -0.055924664 -0.0437957942  0.0942058906 -0.057162230  0.0521060730
## [38,] -0.341961877 -0.1357950318  0.1947693456 -0.138499348 -0.3472758955
## [39,]  0.043835090 -0.0004998668  0.0440130803  0.102686235 -0.1834565446
## [40,] -0.047462146 -0.3491007272  0.0417032795  0.015547115  0.1022138367
## [41,] -0.126619569  0.2101723447  0.1153387529 -0.114897259 -0.1719321339
## [42,] -0.303739945  0.1228835965  0.1583111495 -0.029084689 -0.1872506015
## [43,]  0.073903747 -0.1031640173  0.2902258576  0.093232054 -0.2441483988
## [44,]  0.071245093  0.0482699561  0.0270105524  0.252026987 -0.0776057893
##               [,26]        [,27]         [,28]        [,29]       [,30]
##  [1,] -8.033697e-02  0.094319983  0.2084064685 -0.018176822  0.13796861
##  [2,] -1.925864e-01  0.023573380 -0.0759461830  0.100582025 -0.05667232
##  [3,] -8.330080e-02 -0.019987937 -0.0555715284 -0.343592832 -0.01151938
##  [4,] -9.389279e-02  0.018846307  0.0093062127 -0.222467957 -0.03486570
##  [5,] -1.152331e-01 -0.108512768  0.0070012658 -0.134480633  0.07440798
##  [6,] -1.803001e-01  0.362076202 -0.1179905061  0.046202234  0.04464038
##  [7,]  3.953985e-01  0.009573614 -0.1184339094  0.055759633 -0.10466380
##  [8,]  1.108610e-01  0.189458496  0.1347867946 -0.277756269 -0.13778980
##  [9,]  8.364389e-02 -0.078993330  0.1066284836  0.055104220 -0.15039426
## [10,] -3.866072e-02  0.159098305  0.2014421786  0.371416132  0.17568645
## [11,]  2.175935e-01 -0.123552875 -0.2522577598  0.041089758 -0.02206440
## [12,] -2.361067e-01  0.013636057 -0.1480474647  0.080526036  0.06445313
## [13,] -1.379188e-01  0.060791780 -0.4632199862 -0.022944379 -0.03005825
## [14,]  2.421939e-01 -0.106505262 -0.1330115087 -0.139938624  0.15902893
## [15,]  2.184100e-01 -0.050037611  0.1246606638 -0.008856355 -0.12655875
## [16,]  1.126277e-01 -0.023816098  0.0327047297  0.020496598  0.10758891
## [17,] -1.257153e-01  0.357490102 -0.0845041248  0.085217499  0.07106844
## [18,]  1.823577e-01 -0.046005603 -0.0067226120  0.241868201  0.31637699
## [19,]  8.339704e-02  0.032237209  0.0395797118 -0.072964836  0.28562648
## [20,] -2.135156e-01  0.222213828 -0.0402528752 -0.177045608  0.04929635
## [21,]  7.389293e-02 -0.006580940 -0.1149855540 -0.008098603 -0.02939110
## [22,] -1.904728e-01 -0.304911443  0.1050648660 -0.135862630  0.18626997
## [23,]  9.111655e-02 -0.024571899 -0.1072721019 -0.303742800 -0.16142417
## [24,]  1.039046e-01  0.218986761  0.1830636025 -0.082053439 -0.06311540
## [25,]  6.048598e-02 -0.058106885 -0.0367100106  0.070526468 -0.14916497
## [26,]  1.921730e-01  0.299504150 -0.0979279347  0.082135560 -0.00597419
## [27,] -9.740586e-02 -0.037632887  0.0009563031  0.126712979  0.25361215
## [28,] -5.870103e-02 -0.347091500  0.3128916077  0.006157122 -0.02187836
## [29,]  1.730836e-02  0.086631430  0.2239202126  0.235289648 -0.35181433
## [30,]  1.504512e-02 -0.050357726 -0.1612653195  0.023617311  0.14801420
## [31,]  1.526465e-01 -0.179285326 -0.0104669470  0.133480544 -0.05124829
## [32,] -1.688738e-01  0.035868925  0.0942346613  0.079302231 -0.04313616
## [33,] -2.473202e-02  0.043633957  0.1916413935  0.112350244  0.11532348
## [34,] -7.900404e-05 -0.120643524 -0.0278723120 -0.227574230  0.29695038
## [35,]  1.269911e-02 -0.107245643 -0.1583740633  0.241675024  0.04838694
## [36,] -2.602618e-01 -0.054893631 -0.1335277627 -0.051551124 -0.22535221
## [37,]  1.573058e-01  0.037203593 -0.1473010180 -0.036177825 -0.10682113
## [38,]  1.640740e-01  0.211906006  0.0954397021 -0.134952315  0.12736797
## [39,] -4.189852e-02  0.109338518  0.3220092606 -0.142904520 -0.11794901
## [40,] -5.904309e-02 -0.148851172 -0.0968795482  0.094930687 -0.31528043
## [41,] -1.748973e-01 -0.009451204  0.0220916969  0.018267384 -0.11134284
## [42,] -4.741413e-02  0.055416797 -0.1036494439  0.185985824 -0.11294606
## [43,] -2.230702e-01 -0.224670705 -0.0199560387  0.120400165 -0.04226234
## [44,]  1.761620e-02 -0.021514667  0.0743524282 -0.011008308 -0.11189498
##              [,31]         [,32]       [,33]        [,34]        [,35]
##  [1,] -0.100248035  0.0982206236 -0.21893784  0.147250283 -0.019989813
##  [2,] -0.091973009  0.1012692976  0.01303996  0.125933798  0.006839564
##  [3,]  0.462092526 -0.0795956207  0.12172790 -0.079826238  0.079981237
##  [4,] -0.307810297  0.3429716903  0.14243270  0.035786856  0.328009977
##  [5,]  0.095069271  0.0661222716 -0.35796076  0.193711501 -0.040531356
##  [6,]  0.062886831  0.2390380332  0.09854627  0.034725611  0.073657873
##  [7,] -0.083669271 -0.1188894948  0.04376985  0.010472468 -0.038253195
##  [8,]  0.118634002 -0.1312607772  0.01966091  0.075579932  0.007381140
##  [9,] -0.205137656  0.0198073342  0.09799627 -0.218116373  0.083992178
## [10,] -0.044271836  0.0397231918  0.03186040 -0.074622803  0.095521930
## [11,]  0.017313515  0.0807537644  0.24231133 -0.028114946  0.001634762
## [12,]  0.054911547 -0.1838295067 -0.04252816 -0.148497554 -0.161656223
## [13,] -0.238105330  0.0859276330 -0.08832163 -0.025175725 -0.117746412
## [14,]  0.121194983  0.3902755733 -0.15451997 -0.321083266 -0.047032534
## [15,]  0.057044388 -0.0005654559 -0.23293607  0.053336972 -0.127116936
## [16,] -0.023484452  0.2120154290  0.08678238  0.194810310  0.010087802
## [17,] -0.086653231 -0.0498649785 -0.21136981 -0.050676501 -0.158711989
## [18,]  0.100045999 -0.0764050307 -0.02023087 -0.129411153  0.229894040
## [19,] -0.033805181 -0.2824635372  0.11321564  0.264161561 -0.014813632
## [20,] -0.218931615 -0.0950926114  0.23143594  0.113406535 -0.039678056
## [21,]  0.015590850 -0.0465221847 -0.09692249 -0.063672344  0.103472373
## [22,]  0.036827228  0.0757826107  0.21288033 -0.073739743  0.035668980
## [23,] -0.136903439  0.0516924119 -0.05833403 -0.105068549 -0.325838019
## [24,]  0.005755020  0.2326142902 -0.07377597  0.067667035  0.044021905
## [25,]  0.003249134 -0.0743199206  0.03276176 -0.221546526  0.080629156
## [26,] -0.008655215  0.0418356850  0.28622693  0.027230689 -0.026287892
## [27,]  0.018503132 -0.1474070363  0.06112983 -0.167830036 -0.241920790
## [28,] -0.324331682  0.0399362586 -0.02272243  0.113209807 -0.216935421
## [29,]  0.126109777  0.0674566627 -0.06797678  0.034036247 -0.198157958
## [30,]  0.045107231 -0.0749939306 -0.23393300 -0.062432902 -0.139605493
## [31,] -0.111985780 -0.0752068646 -0.15854373  0.178358475  0.123633713
## [32,]  0.205758125 -0.0280252466 -0.08658867  0.187387487  0.233681290
## [33,]  0.008155863  0.0694148276 -0.02476169 -0.239340191  0.078053416
## [34,]  0.003279997 -0.1403197660  0.07290949  0.169235266 -0.072717910
## [35,] -0.021505643 -0.1391819701  0.07805201  0.126842191  0.069166033
## [36,] -0.122982264 -0.2314657945 -0.28836671 -0.263751380  0.346289274
## [37,] -0.014654284 -0.0800287029 -0.19842288  0.278329463  0.285956318
## [38,]  0.038221191 -0.1180699675 -0.06689775 -0.188026684  0.155615125
## [39,] -0.146361620 -0.2671707539  0.11861115 -0.289700271 -0.046147890
## [40,]  0.048651447 -0.1816799767  0.28278763  0.108767705  0.067414389
## [41,]  0.323298063 -0.0101716187 -0.03810079  0.107514022 -0.093947247
## [42,]  0.079759088  0.0944463189  0.06725446  0.042025484 -0.301562875
## [43,]  0.120955651  0.2558083173  0.07408185 -0.080002030  0.098325712
## [44,]  0.290790830  0.1030406674  0.11511975 -0.002075723 -0.052950140
##              [,36]        [,37]       [,38]        [,39]         [,40]
##  [1,]  0.001644127  0.078908532 -0.06736398 -0.221521002  0.3580546010
##  [2,] -0.063990379 -0.089148140 -0.02811641  0.115541430  0.0216996262
##  [3,] -0.174429626  0.119297677  0.10228300  0.067534260  0.1143075104
##  [4,]  0.068045273 -0.026591109  0.09066083  0.067565156 -0.0703322756
##  [5,]  0.160498573  0.119709205 -0.10323443  0.557157069 -0.1441372952
##  [6,]  0.351628378 -0.026123733 -0.10073654 -0.030658119  0.3904840306
##  [7,]  0.134913526 -0.053856470  0.02575474  0.067533799  0.0896058169
##  [8,]  0.143301566  0.044316376 -0.09397996  0.142276896  0.2455355552
##  [9,]  0.038226720  0.663657867  0.02835228  0.118310288 -0.0364752957
## [10,]  0.025666266  0.013201040 -0.10807231  0.076974322 -0.1907136653
## [11,]  0.116088793 -0.316120313  0.22900727  0.165742267  0.0394985110
## [12,] -0.018474702 -0.071415047  0.06464496  0.007821154 -0.0665384291
## [13,]  0.205126900  0.078792512 -0.14088868 -0.104861559 -0.1303272686
## [14,] -0.141066601  0.112935956 -0.09650292 -0.054461543  0.0497539203
## [15,]  0.013452915  0.012971148  0.14675650 -0.135613765  0.1868944685
## [16,] -0.052436091  0.085226093 -0.19575035 -0.166498418 -0.2285749452
## [17,] -0.125240302 -0.020912479 -0.08845153  0.079235618 -0.0520845687
## [18,] -0.052835495 -0.105768805  0.03418626  0.034453439  0.1059165274
## [19,]  0.204101148  0.139518368  0.09528737  0.150038926 -0.1625338163
## [20,] -0.451087216  0.043857587  0.20493237 -0.110798920  0.0922078837
## [21,] -0.241319921 -0.159536618  0.12834342  0.015576162 -0.1993910828
## [22,]  0.126346202 -0.006940047  0.04731324  0.026883372  0.0817760993
## [23,] -0.161913179 -0.042700851 -0.02908042  0.005995746 -0.1918139673
## [24,]  0.154552037 -0.266469783  0.25979339  0.091256127 -0.1789654394
## [25,]  0.217457507 -0.054789724 -0.14528064 -0.413146924 -0.0044463968
## [26,] -0.191806236  0.127665711  0.02072123  0.103631071  0.0130761474
## [27,]  0.079161705  0.047208624  0.01787096 -0.019718837 -0.0572896812
## [28,] -0.029464608 -0.128151160  0.07206676 -0.059469300  0.0760498911
## [29,]  0.012377320 -0.132019311  0.02120492  0.075305425 -0.1063886773
## [30,]  0.166275901  0.147407428  0.44014160 -0.118837760  0.0894520921
## [31,] -0.279783303  0.067291740 -0.24742191  0.082887818  0.2542307751
## [32,] -0.109380586  0.065962280  0.14821891 -0.250265615 -0.2454999795
## [33,] -0.183649904 -0.167678946  0.14873851  0.171648960  0.1607713983
## [34,]  0.033275323 -0.275917076 -0.30861355 -0.133133268 -0.0288008061
## [35,] -0.037520223  0.064157188 -0.05133779  0.075041618  0.0008905307
## [36,] -0.036427871 -0.167188320 -0.11577492  0.132532088  0.1016983737
## [37,]  0.056383157  0.038107072  0.14359667 -0.237560083 -0.1118753979
## [38,]  0.033078152  0.007281696 -0.15850434 -0.025658229 -0.2118580626
## [39,]  0.186782389 -0.031284162 -0.01742479 -0.062833770 -0.1019008146
## [40,]  0.066801015 -0.010751781 -0.05564397  0.092610867  0.0674363989
## [41,]  0.046589140  0.131858711  0.07232493 -0.120731112 -0.0261566426
## [42,] -0.040314265  0.021167328 -0.01290755  0.036648194  0.0864138540
## [43,]  0.044863158  0.041549253  0.08220188 -0.038828890 -0.1244840770
## [44,] -0.087696248 -0.056214474 -0.37594413 -0.033069979 -0.1040236071
##             [,41]         [,42]        [,43]        [,44]
##  [1,]  0.17112817 -0.0997196682 -0.235806285  0.458272605
##  [2,]  0.04770224 -0.0669650141  0.003039364  0.012917009
##  [3,]  0.11534211 -0.1041726090  0.027956375 -0.082884753
##  [4,]  0.20426862 -0.0189974703  0.044608160 -0.052369081
##  [5,]  0.01383163  0.0987404339  0.150556499  0.177014142
##  [6,] -0.28693113  0.0830807776  0.074876697 -0.037225518
##  [7,] -0.22402780 -0.0632474899  0.013357848  0.085022934
##  [8,]  0.18839428 -0.1268167378 -0.078096493  0.018279941
##  [9,] -0.09856825  0.0910363604 -0.122779277  0.048714172
## [10,]  0.05972566  0.0444831872 -0.059375640  0.048253109
## [11,]  0.15077032  0.3712302372 -0.113290914  0.107104252
## [12,]  0.03495583 -0.0352943209  0.014107283 -0.124390213
## [13,]  0.12459271 -0.0446635963 -0.018973690  0.066497200
## [14,] -0.08552374  0.0601699926  0.032246165  0.050855704
## [15,] -0.19775454  0.0428117580 -0.005767644 -0.163972550
## [16,] -0.19207242 -0.4783002851  0.286911905 -0.212849175
## [17,]  0.03718783  0.0274765769 -0.038631712 -0.050110634
## [18,] -0.09950293 -0.0241581794  0.124234385  0.013693984
## [19,] -0.09148476  0.0131702828 -0.457866920 -0.236257806
## [20,] -0.23038131  0.1010648682 -0.061520120 -0.076742099
## [21,] -0.04204243 -0.4099037420 -0.335947892  0.439098308
## [22,] -0.02849267 -0.0755069287 -0.009193595 -0.018410593
## [23,]  0.01601128  0.1164521263  0.067763111  0.005913644
## [24,]  0.14119948 -0.1867080141 -0.052254449 -0.251231215
## [25,]  0.31785570 -0.0240190330 -0.223817155 -0.139036005
## [26,]  0.19492839 -0.0229973617  0.079333176  0.029964657
## [27,]  0.03672236  0.0003113707  0.031416452  0.010268098
## [28,] -0.08324729  0.0776878891 -0.044817489 -0.022411067
## [29,] -0.06005707 -0.0511783875 -0.027593516 -0.035935382
## [30,]  0.16061078 -0.1877582745  0.190391360 -0.083204928
## [31,]  0.36729972  0.0398788313  0.046104824 -0.331756122
## [32,]  0.21017839  0.3312266955  0.196774501  0.099225979
## [33,] -0.04180715  0.0140768651  0.103059072  0.046452555
## [34,] -0.02843631  0.0600337596  0.096926642  0.066042918
## [35,]  0.05777688 -0.0384236105  0.121420373  0.051555173
## [36,] -0.22030940 -0.0562117076 -0.093533137 -0.219454978
## [37,] -0.27178614  0.2224127435  0.106154234  0.115293399
## [38,] -0.04032618  0.0755318480 -0.039108699 -0.053159109
## [39,]  0.02607930  0.0428478374  0.369663841  0.175501576
## [40,] -0.03192919 -0.2470236731  0.180007560  0.218945818
## [41,] -0.03179649 -0.0274344734 -0.077389751 -0.003630865
## [42,] -0.02143874  0.0667870045 -0.004939242 -0.055387133
## [43,] -0.11496432 -0.0055780702 -0.185686163 -0.061248487
## [44,] -0.10736591  0.1737366580 -0.194844628  0.019717953

1 -B :

Cordataset<-data.frame(Cor_data)
data_means<-colMeans(Cordataset)
sorted<-sort(data_means,decreasing = TRUE)[1:5]
sorted
##       Q10       Q20       Q15       Q25       Q40 
## 0.1249910 0.1236756 0.1211648 0.1144871 0.1142559
print(fiveQs<-Cordataset[c(10,20,15,25,40)])
##              Q10          Q20          Q15          Q25         Q40
## Q1   0.097370780  0.161638523  0.053648490  0.145569521  0.06162700
## Q2   0.010071845 -0.057795472  0.062849351 -0.016906137  0.04843845
## Q3   0.287232124  0.130155066  0.227205859  0.159530221  0.11194118
## Q4  -0.029273669  0.020559029  0.055209967 -0.059591105  0.04853183
## Q5   0.301090565  0.514155002  0.382201665  0.576723483  0.28624928
## Q6   0.005591696 -0.043877498  0.025588812 -0.085212015  0.01940527
## Q7   0.203290990  0.168757169  0.121600323  0.162164142  0.11748895
## Q8   0.046275245  0.042455610 -0.079049574 -0.068597510  0.04347001
## Q9   0.058407614  0.049686985  0.124944798  0.164155383  0.02171631
## Q10  1.000000000  0.382422146  0.334777347  0.289872210  0.34567695
## Q11  0.164601096  0.234898245  0.177993878  0.256793093  0.10734880
## Q12 -0.079280078 -0.030756836  0.007765349  0.013732026 -0.01237997
## Q13  0.249563387  0.128269456  0.226899065  0.077982551  0.14369419
## Q14  0.053047706  0.011538666 -0.003685989 -0.072050581  0.12225088
## Q15  0.334777347  0.306584340  1.000000000  0.363701523  0.31060828
## Q16  0.176040837  0.253342865  0.153230609  0.289454747  0.11741388
## Q17  0.084396571  0.115787046  0.065335754  0.097711770  0.09158503
## Q18  0.017844276  0.045749960 -0.058765330 -0.012320369  0.07787023
## Q19  0.027954894 -0.025835182 -0.013511494 -0.123171049  0.12655338
## Q20  0.382422146  1.000000000  0.306584340  0.477071547  0.33488868
## Q21 -0.008256181 -0.040274198  0.101829565 -0.067981259 -0.02310540
## Q22  0.072119029  0.068774003  0.070871092  0.058856727  0.02456177
## Q23 -0.016632408 -0.041703795 -0.089400099 -0.095884077  0.03900254
## Q24  0.083009642  0.083334709  0.084662235  0.133330896  0.05372057
## Q25  0.289872210  0.477071547  0.363701523  1.000000000  0.30455903
## Q26  0.057210849  0.081118300  0.165255902  0.215368340  0.01992914
## Q27 -0.049398020  0.013481078  0.038894812  0.038721552 -0.02860678
## Q28  0.219329568  0.063703063  0.170839916  0.111193716  0.25804333
## Q29 -0.021204381  0.004074728 -0.053157311 -0.081535897 -0.10544947
## Q30  0.307980000  0.346417389  0.163673567  0.209954809  0.34766321
## Q31  0.008135709 -0.032787639 -0.001385649 -0.128167313 -0.02850891
## Q32  0.172694402  0.097346145  0.129989135  0.037761061  0.28607746
## Q33  0.147742343  0.110304360  0.224562268  0.251933144  0.11462525
## Q34  0.158814664  0.119029739  0.199506616  0.191534316  0.03064611
## Q35 -0.135570870 -0.104551767 -0.032204840 -0.118206315 -0.21683008
## Q36  0.136706665  0.136096037  0.054772145  0.146054737  0.11875617
## Q37 -0.029386172 -0.046001126 -0.058460989  0.033038160 -0.10809208
## Q38  0.115998982  0.058276239  0.186051766  0.070237125  0.25175485
## Q39 -0.012225025  0.012882909 -0.017251858 -0.102542841 -0.12197296
## Q40  0.345676955  0.334888678  0.310608276  0.304559035  1.00000000
## Q41 -0.171830708 -0.190321846 -0.074286778 -0.108171045 -0.24040635
## Q42  0.165323005  0.066482181  0.045435216  0.065700941  0.21489671
## Q43  0.066944711  0.098043627 -0.035243045  0.004987494  0.00683121
## Q44  0.205123808  0.318306087  0.211166006  0.230077845  0.30478760
alpha(fiveQs)
## 
## Reliability analysis   
## Call: alpha(x = fiveQs)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##        0.9       0.9     0.9      0.65 9.2 0.024 0.12 0.17     0.63
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.9 0.95 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## Q10      0.88      0.88    0.86      0.64 7.2    0.030 0.0081  0.62
## Q20      0.87      0.87    0.84      0.62 6.6    0.033 0.0029  0.62
## Q15      0.89      0.89    0.87      0.66 7.8    0.028 0.0073  0.65
## Q25      0.88      0.88    0.84      0.64 7.1    0.031 0.0021  0.63
## Q40      0.89      0.89    0.88      0.67 8.3    0.026 0.0053  0.66
## 
##  Item statistics 
##      n raw.r std.r r.cor r.drop mean   sd
## Q10 44  0.85  0.85  0.81   0.76 0.12 0.19
## Q20 44  0.89  0.88  0.87   0.82 0.12 0.20
## Q15 44  0.82  0.83  0.76   0.73 0.12 0.18
## Q25 44  0.87  0.86  0.84   0.78 0.11 0.21
## Q40 44  0.81  0.81  0.74   0.70 0.11 0.20
glb(fiveQs)
## Loading required namespace: GPArotation
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : I
## am sorry, to do these rotations requires the GPArotation package to be installed
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## $beta
## [1] 0.8694207
## 
## $beta.factor
## [1] NaN
## 
## $alpha.pc
## [1] 0.7218343
## 
## $glb.max
## [1] 0.9349485
## 
## $glb.IC
## [1] 0.930006
## 
## $glb.Km
## [1] 0.9349485
## 
## $glb.Fa
## [1] 0.8744227
## 
## $r.smc
## [1] 0.8955804
## 
## $tenberge
## $tenberge$mu0
## [1] 0.9019261
## 
## $tenberge$mu1
## [1] 0.9029154
## 
## $tenberge$mu2
## [1] 0.9033335
## 
## $tenberge$mu3
## [1] 0.9035189
## 
## 
## $keys
##     IC1 IC2 ICr1 ICr2 K1 K2 F1 F2 f1 f2
## Q10   1   0    1    0  0  1  1  0  1  0
## Q20   0   1    0    1  1  0  1  0  1  0
## Q15   1   0    0    1  1  0  0  1  1  0
## Q25   0   1    1    0  0  1  0  1  1  0
## Q40   1   0    1    0  1  0  1  0  1  0

Problem 2:

2-A:

tr <- read.csv("TaskRatings.csv")
data <- tr
merged <- c(data[,3],data[,11], data[,19])
subject <- as.factor(rep(1:3,each=nrow(data)))
task <- rep(data$Task,3)
frame.gm <- data.frame(task,subject,merged)

library(knitr)
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(GGally) 
## Warning: package 'GGally' was built under R version 3.6.2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## 
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
## 
##     nasa
library(reshape2)
cor(tr[3:10],method = "pearson")
##             GM.1        FM.1        R.1       V.1       LTM.1      WM.1
## GM.1   1.0000000  0.26255692 -0.2531784 0.2184429 -0.25185870 0.1616224
## FM.1   0.2625569  1.00000000 -0.1085015 0.1555248 -0.08726778 0.5029053
## R.1   -0.2531784 -0.10850149  1.0000000 0.2769584  0.55874923 0.2299233
## V.1    0.2184429  0.15552485  0.2769584 1.0000000  0.31968530 0.4067361
## LTM.1 -0.2518587 -0.08726778  0.5587492 0.3196853  1.00000000 0.4961803
## WM.1   0.1616224  0.50290529  0.2299233 0.4067361  0.49618034 1.0000000
## Att.1 -0.1239599  0.01285981  0.6333898 0.4060387  0.64111888 0.4789322
## EC.1  -0.1170045  0.15403826  0.5652861 0.3610463  0.60677415 0.5639856
##             Att.1       EC.1
## GM.1  -0.12395987 -0.1170045
## FM.1   0.01285981  0.1540383
## R.1    0.63338976  0.5652861
## V.1    0.40603873  0.3610463
## LTM.1  0.64111888  0.6067742
## WM.1   0.47893224  0.5639856
## Att.1  1.00000000  0.7181948
## EC.1   0.71819482  1.0000000
cor(tr[3],tr[11])
##           GM.2
## GM.1 0.6638527
cor(tr[4],tr[12])
##           FM.2
## FM.1 0.7475984
cor(tr[5],tr[13])
##           R.2
## R.1 0.5319479
cor(tr[6],tr[14])
##           V.2
## V.1 0.6848928
cor(tr[7],tr[15])
##           LTM.2
## LTM.1 0.3883135
cor(tr[8],tr[16])
##            WM.2
## WM.1 0.01468169
cor(tr[9],tr[17])
##           Att.2
## Att.1 0.6104159
cor(tr[10],tr[18])
##           EC.2
## EC.1 0.5176904

2-B:

merged1 <- c(data[,4],data[,12], data[,20])
subject1 <- as.factor(rep(1:3,each=nrow(data)))
task1 <- rep(data$Task,3)
frame.fm <- data.frame(task1,subject1,merged1)

merged2 <- c(data[,5],data[,13], data[,21])
subject2 <- as.factor(rep(1:3,each=nrow(data)))
task2 <- rep(data$Task,3)
frame.r <- data.frame(task2,subject2,merged2)

merged3 <- c(data[,6],data[,14], data[,22])
subject3 <- as.factor(rep(1:3,each=nrow(data)))
task3 <- rep(data$Task,3)
frame.v <- data.frame(task3,subject3,merged3)

merged4 <- c(data[,7],data[,15], data[,23])
subject4 <- as.factor(rep(1:3,each=nrow(data)))
task4 <- rep(data$Task,3)
frame.ltm <- data.frame(task4,subject4,merged4)

merged5 <- c(data[,8],data[,16], data[,24])
subject5 <- as.factor(rep(1:3,each=nrow(data)))
task5 <- rep(data$Task,3)
frame.wm <- data.frame(task5,subject5,merged5)

merged6 <- c(data[,9],data[,17], data[,25])
subject6 <- as.factor(rep(1:3,each=nrow(data)))
task6 <- rep(data$Task,3)
frame.att <- data.frame(task6,subject6,merged6)

merged7 <- c(data[,10],data[,18], data[,26])
subject7 <- as.factor(rep(1:3,each=nrow(data)))
task7 <- rep(data$Task,3)
frame.ec <- data.frame(task7,subject7,merged7)

require(ICC)
## Loading required package: ICC
library(reshape2)
library(dplyr)
library(ICC)

ICC_GM<-ICCest(x=task,y=merged,data=frame.gm)
ICC_FM<-ICCest(x=task1,y=merged1,data=frame.fm)
ICC_R<-ICCest(x=task2,y=merged2,data=frame.r)
ICC_V<-ICCest(x=task3,y=merged3,data=frame.v)
ICC_LTM<-ICCest(x=task4,y=merged4,data=frame.ltm)
ICC_WM<-ICCest(x=task5,y=merged5,data=frame.wm)
ICC_ATT<-ICCest(x=task6,y=merged6,data=frame.att)
ICC_EC<-ICCest(x=task7,y=merged7,data=frame.ec)

ICC_GM
## $ICC
## [1] 0.212527
## 
## $LowerCI
## [1] 0.09429839
## 
## $UpperCI
## [1] 0.3395611
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 2.962617
## 
## $vara
## [1] 0.799565
ICC_FM
## $ICC
## [1] 0.6057337
## 
## $LowerCI
## [1] 0.5055756
## 
## $UpperCI
## [1] 0.6963667
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 1.442368
## 
## $vara
## [1] 2.215992
ICC_R
## $ICC
## [1] 0.4227881
## 
## $LowerCI
## [1] 0.3053517
## 
## $UpperCI
## [1] 0.5379009
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 1.274143
## 
## $vara
## [1] 0.9332667
ICC_V
## $ICC
## [1] 0.4800731
## 
## $LowerCI
## [1] 0.3662877
## 
## $UpperCI
## [1] 0.5888517
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 1.476636
## 
## $vara
## [1] 1.363448
ICC_LTM
## $ICC
## [1] -0.150081
## 
## $LowerCI
## [1] -0.2288591
## 
## $UpperCI
## [1] -0.0508192
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 3.423676
## 
## $vara
## [1] -0.446776
ICC_WM
## $ICC
## [1] 0.2243142
## 
## $LowerCI
## [1] 0.105634
## 
## $UpperCI
## [1] 0.3511783
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 1.859813
## 
## $vara
## [1] 0.537824
ICC_ATT
## $ICC
## [1] 0.4328725
## 
## $LowerCI
## [1] 0.3159669
## 
## $UpperCI
## [1] 0.5469615
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 1.003115
## 
## $vara
## [1] 0.7656498
ICC_EC
## $ICC
## [1] 0.3486409
## 
## $LowerCI
## [1] 0.2287275
## 
## $UpperCI
## [1] 0.4700486
## 
## $N
## [1] 107
## 
## $k
## [1] 3
## 
## $varw
## [1] 1.186916
## 
## $vara
## [1] 0.6352985

2 - C:

library(psych)

a1<-frame.gm$subject[1:107]
b1<-frame.gm$subject[108:214]
cohen.kappa(cbind(a1,b1))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a2<-frame.fm$subject1[1:107]
b2<-frame.fm$subject1[108:214]
cohen.kappa(cbind(a2,b2))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a3<-frame.r$subject2[1:107]
b3<-frame.r$subject2[108:214]
cohen.kappa(cbind(a3,b3))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a4<-frame.v$subject3[1:107]
b4<-frame.v$subject3[108:214]
cohen.kappa(cbind(a4,b4))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a5<-frame.ltm$subject4[1:107]
b5<-frame.ltm$subject4[108:214]
cohen.kappa(cbind(a5,b5))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a6<-frame.wm$subject5[1:107]
b6<-frame.wm$subject5[108:214]
cohen.kappa(cbind(a6,b6))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a7<-frame.att$subject6[1:107]
b7<-frame.att$subject6[108:214]
cohen.kappa(cbind(a7,b7))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107
a8<-frame.ec$subject7[1:107]
b8<-frame.ec$subject7[108:214]
cohen.kappa(cbind(a6,b6))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa     0        0     0
## weighted kappa       0        0     0
## 
##  Number of subjects = 107