Problem 1:

Categorical effect of length.

Inference:

There is a significant relation between list length and spoken duration, as the P-value is less than 0.05.

In the Tukey HSD - test, the differences which are significant are:

5-3 6-3 6-4 6-5

Effect size of the model is 0.246. It means that the effect of length on time is 24.6%.

The coefficents of the model are:

(Intercept) length4 length5 length6
2.8384 0.6371 1.4755 2.5484

Code:

library(ISR3)
library(sjstats)
## Warning: package 'sjstats' was built under R version 3.6.2
library(lsr)
library(car)
## Warning: package 'car' was built under R version 3.6.2
## Loading required package: carData
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
data <- read.csv("spokenduration.csv")
data$length <- as.factor(rowSums(data[,2:12]))

A1<-aov(time~length,data=data)
summary(A1)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## length        3  199.7   66.56   23.17 5.06e-13 ***
## Residuals   213  611.8    2.87                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(A1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = time ~ length, data = data)
## 
## $length
##          diff         lwr      upr     p adj
## 4-3 0.6370875 -0.21173713 1.485912 0.2131346
## 5-3 1.4754972  0.63865652 2.312338 0.0000496
## 6-3 2.5483665  1.71152584 3.385207 0.0000000
## 5-4 0.8384096 -0.01041502 1.687234 0.0542585
## 6-4 1.9112790  1.06245431 2.760104 0.0000001
## 6-5 1.0728693  0.23602868 1.909710 0.0058012
eta_sq(A1)
etaSquared(A1)
##         eta.sq eta.sq.part
## length 0.24608     0.24608
Lm1<-lm(time~length,data=data)
Lm1
## 
## Call:
## lm(formula = time ~ length, data = data)
## 
## Coefficients:
## (Intercept)      length4      length5      length6  
##      2.8384       0.6371       1.4755       2.5484
summary(A1)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## length        3  199.7   66.56   23.17 5.06e-13 ***
## Residuals   213  611.8    2.87                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova_stats(A1)

Problem 2:

Subject effects

Inference:

Both variables, subject and length are significant. Length has an effect of 24.6% and subject has an effect of 47.4% on time with Eta Square, while Omega square shows a length effect of 24.2% and subject effect of 46.4%.

The individual participants, which were significantly faster are:

s02-s01 s03-s01 s04-s01 s03-s02 s07-s02 s08-s02 s04-s03 s05-s03 s06-s03 s07-s03 s08-s03 s07-s04 s08-s04 s07-s05 s08-s05 s07-s06 s08-s06

The rest are slower and non-significant.

Code:

subject<-data$subject
contrasts(subject)<-contr.sum(levels(subject))
A22<-aov(time~length+subject,data = data)
Anova(A22,type="II")
anova_stats(A22)
eta_sq(A22)
omega_sq(A22)
TukeyHSD(A22)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = time ~ length + subject, data = data)
## 
## $length
##          diff       lwr      upr     p adj
## 4-3 0.6370875 0.1110684 1.163107 0.0104729
## 5-3 1.4754972 0.9569045 1.994090 0.0000000
## 6-3 2.5483665 2.0297739 3.066959 0.0000000
## 5-4 0.8384096 0.3123905 1.364429 0.0003078
## 6-4 1.9112790 1.3852598 2.437298 0.0000000
## 6-5 1.0728693 0.5542767 1.591462 0.0000013
## 
## $subject
##                diff        lwr        upr     p adj
## s02-s01 -1.48151912 -2.3650003 -0.5980379 0.0000178
## s03-s01 -3.89438926 -4.7700969 -3.0186817 0.0000000
## s04-s01 -1.28487443 -2.1605820 -0.4091668 0.0003088
## s05-s01 -0.75244166 -1.6442186  0.1393353 0.1678404
## s06-s01 -0.63863715 -1.5221183  0.2448440 0.3479371
## s07-s01  0.39492774 -0.4885534  1.2784089 0.8702848
## s08-s01  0.45787089 -0.4178367  1.3335785 0.7491808
## s03-s02 -2.41287015 -3.2801283 -1.5456120 0.0000000
## s04-s02  0.19664468 -0.6706134  1.0639028 0.9970765
## s05-s02  0.72907746 -0.1544037  1.6125586 0.1900044
## s06-s02  0.84288196 -0.0322248  1.7179887 0.0682314
## s07-s02  1.87644685  1.0013401  2.7515536 0.0000000
## s08-s02  1.93939000  1.0721319  2.8066481 0.0000000
## s04-s03  2.60951483  1.7501770  3.4688526 0.0000000
## s05-s03  3.14194760  2.2662400  4.0176552 0.0000000
## s06-s03  3.25575211  2.3884940  4.1230102 0.0000000
## s07-s03  4.28931700  3.4220589  5.1565751 0.0000000
## s08-s03  4.35226015  3.4929224  5.2115979 0.0000000
## s05-s04  0.53243277 -0.3432748  1.4081404 0.5786002
## s06-s04  0.64623728 -0.2210208  1.5134954 0.3086493
## s07-s04  1.67980217  0.8125441  2.5470603 0.0000003
## s08-s04  1.74274532  0.8834075  2.6020831 0.0000001
## s06-s05  0.11380451 -0.7696767  0.9972857 0.9999290
## s07-s05  1.14736940  0.2638882  2.0308506 0.0024160
## s08-s05  1.21031255  0.3346050  2.0860201 0.0008979
## s07-s06  1.03356489  0.1584581  1.9086717 0.0088160
## s08-s06  1.09650804  0.2292499  1.9637662 0.0035708
## s08-s07  0.06294315 -0.8043150  0.9302013 0.9999986

Problem 3:

Subject x length interactions

Inferences:

The coefficients of Length are: Coefficients: (Intercept) length4 length5 length6 3.77995 0.69606 1.58464 2.29371

The dignificant length:subject values are:

length 5 - subjects 3 length 6 - subjects 3 length 6 - subjects 7 length 6 - subjects 8

Code:

LM3<-lm(time~length*subject,data=data)
summary(LM3)
## 
## Call:
## lm(formula = time ~ length * subject, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9877 -0.5156 -0.0670  0.2712  7.4353 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.77995    0.39288   9.621  < 2e-16 ***
## length4             0.69606    0.53540   1.300  0.19519    
## length5             1.58464    0.55561   2.852  0.00484 ** 
## length6             2.29371    0.53540   4.284 2.95e-05 ***
## subjects02         -1.31678    0.53540  -2.459  0.01483 *  
## subjects03         -2.79334    0.53540  -5.217 4.84e-07 ***
## subjects04         -0.68955    0.53540  -1.288  0.19939    
## subjects05         -0.87705    0.53540  -1.638  0.10310    
## subjects06         -1.27716    0.53540  -2.385  0.01807 *  
## subjects07         -0.23307    0.53540  -0.435  0.66383    
## subjects08         -0.21075    0.53540  -0.394  0.69430    
## length4:subjects02 -0.31613    0.75717  -0.418  0.67679    
## length5:subjects02 -0.42280    0.75717  -0.558  0.57725    
## length6:subjects02  0.04725    0.74247   0.064  0.94933    
## length4:subjects03 -0.73289    0.74247  -0.987  0.32488    
## length5:subjects03 -1.92839    0.75717  -2.547  0.01168 *  
## length6:subjects03 -1.76637    0.74247  -2.379  0.01837 *  
## length4:subjects04 -0.27865    0.74247  -0.375  0.70787    
## length5:subjects04 -0.68173    0.75717  -0.900  0.36909    
## length6:subjects04 -1.44438    0.74247  -1.945  0.05324 .  
## length4:subjects05 -0.13802    0.75717  -0.182  0.85556    
## length5:subjects05  0.38635    0.75717   0.510  0.61048    
## length6:subjects05  0.17643    0.75717   0.233  0.81601    
## length4:subjects06  0.39881    0.75717   0.527  0.59902    
## length5:subjects06  0.68824    0.75717   0.909  0.36455    
## length6:subjects06  1.42169    0.74247   1.915  0.05706 .  
## length4:subjects07  0.22712    0.75717   0.300  0.76454    
## length5:subjects07  0.54483    0.75717   0.720  0.47270    
## length6:subjects07  1.67169    0.74247   2.252  0.02553 *  
## length4:subjects08  0.30060    0.74247   0.405  0.68605    
## length5:subjects08  0.55599    0.75717   0.734  0.46370    
## length6:subjects08  1.79446    0.74247   2.417  0.01662 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9623 on 185 degrees of freedom
## Multiple R-squared:  0.7889, Adjusted R-squared:  0.7535 
## F-statistic:  22.3 on 31 and 185 DF,  p-value: < 2.2e-16
A3<-aov(time~length*subject,data=data)
A3
## Call:
##    aov(formula = time ~ length * subject, data = data)
## 
## Terms:
##                   length  subject length:subject Residuals
## Sum of Squares  199.6831 384.6762        55.7669  171.3300
## Deg. of Freedom        3        7             21       185
## 
## Residual standard error: 0.9623452
## Estimated effects may be unbalanced
summary(A3)
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## length           3  199.7   66.56  71.872  < 2e-16 ***
## subject          7  384.7   54.95  59.338  < 2e-16 ***
## length:subject  21   55.8    2.66   2.867 7.77e-05 ***
## Residuals      185  171.3    0.93                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(A3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = time ~ length * subject, data = data)
## 
## $length
##          diff       lwr      upr     p adj
## 4-3 0.6370875 0.1545130 1.119662 0.0042165
## 5-3 1.4754972 0.9997358 1.951258 0.0000000
## 6-3 2.5483665 2.0726052 3.024128 0.0000000
## 5-4 0.8384096 0.3558352 1.320984 0.0000692
## 6-4 1.9112790 1.4287045 2.393853 0.0000000
## 6-5 1.0728693 0.5971080 1.548631 0.0000001
## 
## $subject
##                diff         lwr         upr     p adj
## s02-s01 -1.48151912 -2.29222902 -0.67080921 0.0000021
## s03-s01 -3.89438926 -4.69796588 -3.09081264 0.0000000
## s04-s01 -1.28487443 -2.08845105 -0.48129782 0.0000558
## s05-s01 -0.75244166 -1.57076403  0.06588071 0.0965523
## s06-s01 -0.63863715 -1.44934706  0.17207275 0.2402505
## s07-s01  0.39492774 -0.41578217  1.20563764 0.8100917
## s08-s01  0.45787089 -0.34570573  1.26144751 0.6564680
## s03-s02 -2.41287015 -3.20869326 -1.61704703 0.0000000
## s04-s02  0.19664468 -0.59917843  0.99246780 0.9949493
## s05-s02  0.72907746 -0.08163245  1.53978736 0.1125582
## s06-s02  0.84288196  0.03985668  1.64590724 0.0321722
## s07-s02  1.87644685  1.07342157  2.67947213 0.0000000
## s08-s02  1.93939000  1.14356689  2.73521312 0.0000000
## s04-s03  2.60951483  1.82095966  3.39807000 0.0000000
## s05-s03  3.14194760  2.33837098  3.94552422 0.0000000
## s06-s03  3.25575211  2.45992900  4.05157522 0.0000000
## s07-s03  4.28931700  3.49349388  5.08514011 0.0000000
## s08-s03  4.35226015  3.56370498  5.14081532 0.0000000
## s05-s04  0.53243277 -0.27114384  1.33600939 0.4636940
## s06-s04  0.64623728 -0.14958583  1.44206039 0.2064235
## s07-s04  1.67980217  0.88397906  2.47562528 0.0000000
## s08-s04  1.74274532  0.95419015  2.53130049 0.0000000
## s06-s05  0.11380451 -0.69690540  0.92451441 0.9998716
## s07-s05  1.14736940  0.33665949  1.95807930 0.0006112
## s08-s05  1.21031255  0.40673593  2.01388917 0.0001926
## s07-s06  1.03356489  0.23053961  1.83659017 0.0027980
## s08-s06  1.09650804  0.30068493  1.89233115 0.0009660
## s08-s07  0.06294315 -0.73287996  0.85876627 0.9999975
## 
## $`length:subject`
##                     diff          lwr          upr     p adj
## 4:s01-3:s01  0.696056095 -1.361061956  2.753174147 0.9999917
## 5:s01-3:s01  1.584635000 -0.550137290  3.719407290 0.5382671
## 6:s01-3:s01  2.293712667  0.236594615  4.350830718 0.0107875
## 3:s02-3:s01 -1.316778762 -3.373896813  0.740339290 0.8264416
## 4:s02-3:s01 -0.936849333 -3.071621623  1.197922957 0.9986411
## 5:s02-3:s01 -0.154948048 -2.212066099  1.902170004 1.0000000
## 6:s02-3:s01  1.024181381 -1.032936671  3.081299432 0.9900570
## 3:s03-3:s01 -2.793341090 -4.850459142 -0.736223039 0.0002180
## 4:s03-3:s01 -2.830171533 -4.887289585 -0.773053482 0.0001588
## 5:s03-3:s01 -3.137091219 -5.194209271 -1.079973168 0.0000099
## 6:s03-3:s01 -2.265997376 -4.323115428 -0.208879325 0.0130658
## 3:s04-3:s01 -0.689546048 -2.746664099  1.367572004 0.9999932
## 4:s04-3:s01 -0.272135476 -2.329253528  1.784982575 1.0000000
## 5:s04-3:s01  0.213355524 -1.843762528  2.270473575 1.0000000
## 6:s04-3:s01  0.159784095 -1.897333956  2.216902147 1.0000000
## 3:s05-3:s01 -0.877046762 -2.934164813  1.180071290 0.9991790
## 4:s05-3:s01 -0.319010667 -2.453782957  1.815761623 1.0000000
## 5:s05-3:s01  1.093935810 -0.963182242  3.151053861 0.9756354
## 6:s05-3:s01  1.593098667 -0.541673623  3.727870957 0.5260856
## 3:s06-3:s01 -1.277158048 -3.334276099  0.779960004 0.8669852
## 4:s06-3:s01 -0.182291833 -2.317064123  1.952480457 1.0000000
## 5:s06-3:s01  0.995721381 -1.061396671  3.052839432 0.9934274
## 6:s06-3:s01  2.438243810  0.381125758  4.495361861 0.0037925
## 3:s07-3:s01 -0.233073190 -2.290191242  1.824044861 1.0000000
## 4:s07-3:s01  0.690104000 -1.444668290  2.824876290 0.9999970
## 5:s07-3:s01  1.896391238 -0.160726813  3.953509290 0.1222565
## 6:s07-3:s01  3.732328667  1.675210615  5.789446718 0.0000000
## 3:s08-3:s01 -0.210751619 -2.267869671  1.846366432 1.0000000
## 4:s08-3:s01  0.785900095 -1.271217956  2.843018147 0.9998956
## 5:s08-3:s01  1.929873238 -0.127244813  3.986991290 0.1026039
## 6:s08-3:s01  3.877417667  1.820299615  5.934535718 0.0000000
## 5:s01-4:s01  0.888578905 -1.168539147  2.945696956 0.9989669
## 6:s01-4:s01  1.597656571 -0.378758523  3.574071666 0.3459300
## 3:s02-4:s01 -2.012834857 -3.989249952 -0.036419763 0.0397525
## 4:s02-4:s01 -1.632905429 -3.690023480  0.424212623 0.3855771
## 5:s02-4:s01 -0.851004143 -2.827419237  1.125410952 0.9990229
## 6:s02-4:s01  0.328125286 -1.648289809  2.304540380 1.0000000
## 3:s03-4:s01 -3.489397186 -5.465812280 -1.512982091 0.0000001
## 4:s03-4:s01 -3.526227629 -5.502642723 -1.549812534 0.0000001
## 5:s03-4:s01 -3.833147314 -5.809562409 -1.856732220 0.0000000
## 6:s03-4:s01 -2.962053471 -4.938468566 -0.985638377 0.0000165
## 3:s04-4:s01 -1.385602143 -3.362017237  0.590812952 0.6640584
## 4:s04-4:s01 -0.968191571 -2.944606666  1.008223523 0.9921451
## 5:s04-4:s01 -0.482700571 -2.459115666  1.493714523 1.0000000
## 6:s04-4:s01 -0.536272000 -2.512687095  1.440143095 1.0000000
## 3:s05-4:s01 -1.573102857 -3.549517952  0.403312237 0.3795887
## 4:s05-4:s01 -1.015066762 -3.072184813  1.042051290 0.9912635
## 5:s05-4:s01  0.397879714 -1.578535380  2.374294809 1.0000000
## 6:s05-4:s01  0.897042571 -1.160075480  2.954160623 0.9987820
## 3:s06-4:s01 -1.973214143 -3.949629237  0.003200952 0.0510018
## 4:s06-4:s01 -0.878347929 -2.935465980  1.178770123 0.9991571
## 5:s06-4:s01  0.299665286 -1.676749809  2.276080380 1.0000000
## 6:s06-4:s01  1.742187714 -0.234227380  3.718602809 0.1838071
## 3:s07-4:s01 -0.929129286 -2.905544380  1.047285809 0.9957997
## 4:s07-4:s01 -0.005952095 -2.063070147  2.051165956 1.0000000
## 5:s07-4:s01  1.200335143 -0.776079952  3.176750237 0.8917223
## 6:s07-4:s01  3.036272571  1.059857477  5.012687666 0.0000080
## 3:s08-4:s01 -0.906807714 -2.883222809  1.069607380 0.9971483
## 4:s08-4:s01  0.089844000 -1.886571095  2.066259095 1.0000000
## 5:s08-4:s01  1.233817143 -0.742597952  3.210232237 0.8602302
## 6:s08-4:s01  3.181361571  1.204946477  5.157776666 0.0000019
## 6:s01-5:s01  0.709077667 -1.348040385  2.766195718 0.9999876
## 3:s02-5:s01 -2.901413762 -4.958531813 -0.844295710 0.0000852
## 4:s02-5:s01 -2.521484333 -4.656256623 -0.386712043 0.0040407
## 5:s02-5:s01 -1.739583048 -3.796701099  0.317535004 0.2551176
## 6:s02-5:s01 -0.560453619 -2.617571671  1.496664432 0.9999999
## 3:s03-5:s01 -4.377976090 -6.435094142 -2.320858039 0.0000000
## 4:s03-5:s01 -4.414806533 -6.471924585 -2.357688482 0.0000000
## 5:s03-5:s01 -4.721726219 -6.778844271 -2.664608168 0.0000000
## 6:s03-5:s01 -3.850632376 -5.907750428 -1.793514325 0.0000000
## 3:s04-5:s01 -2.274181048 -4.331299099 -0.217062996 0.0123509
## 4:s04-5:s01 -1.856770476 -3.913888528  0.200347575 0.1492360
## 5:s04-5:s01 -1.371279476 -3.428397528  0.685838575 0.7613437
## 6:s04-5:s01 -1.424850905 -3.481968956  0.632267147 0.6888414
## 3:s05-5:s01 -2.461681762 -4.518799813 -0.404563710 0.0031790
## 4:s05-5:s01 -1.903645667 -4.038417957  0.231126623 0.1663665
## 5:s05-5:s01 -0.490699190 -2.547817242  1.566418861 1.0000000
## 6:s05-5:s01  0.008463667 -2.126308623  2.143235957 1.0000000
## 3:s06-5:s01 -2.861793048 -4.918911099 -0.804674996 0.0001206
## 4:s06-5:s01 -1.766926833 -3.901699123  0.367845457 0.2968224
## 5:s06-5:s01 -0.588913619 -2.646031671  1.468204432 0.9999998
## 6:s06-5:s01  0.853608810 -1.203509242  2.910726861 0.9994957
## 3:s07-5:s01 -1.817708190 -3.874826242  0.239409861 0.1800747
## 4:s07-5:s01 -0.894531000 -3.029303290  1.240241290 0.9993978
## 5:s07-5:s01  0.311756238 -1.745361813  2.368874290 1.0000000
## 6:s07-5:s01  2.147693667  0.090575615  4.204811718 0.0285937
## 3:s08-5:s01 -1.795386619 -3.852504671  0.261731432 0.1996744
## 4:s08-5:s01 -0.798734905 -2.855852956  1.258383147 0.9998564
## 5:s08-5:s01  0.345238238 -1.711879813  2.402356290 1.0000000
## 6:s08-5:s01  2.292782667  0.235664615  4.349900718 0.0108576
## 3:s02-6:s01 -3.610491429 -5.586906523 -1.634076334 0.0000000
## 4:s02-6:s01 -3.230562000 -5.287680052 -1.173443948 0.0000041
## 5:s02-6:s01 -2.448660714 -4.425075809 -0.472245620 0.0016259
## 6:s02-6:s01 -1.269531286 -3.245946380  0.706883809 0.8213560
## 3:s03-6:s01 -5.087053757 -7.063468852 -3.110638663 0.0000000
## 4:s03-6:s01 -5.123884200 -7.100299295 -3.147469105 0.0000000
## 5:s03-6:s01 -5.430803886 -7.407218980 -3.454388791 0.0000000
## 6:s03-6:s01 -4.559710043 -6.536125137 -2.583294948 0.0000000
## 3:s04-6:s01 -2.983258714 -4.959673809 -1.006843620 0.0000134
## 4:s04-6:s01 -2.565848143 -4.542263237 -0.589433048 0.0006102
## 5:s04-6:s01 -2.080357143 -4.056772237 -0.103942048 0.0255414
## 6:s04-6:s01 -2.133928571 -4.110343666 -0.157513477 0.0177119
## 3:s05-6:s01 -3.170759429 -5.147174523 -1.194344334 0.0000021
## 4:s05-6:s01 -2.612723333 -4.669841385 -0.555605282 0.0009771
## 5:s05-6:s01 -1.199776857 -3.176191952  0.776638237 0.8922058
## 6:s05-6:s01 -0.700614000 -2.757732052  1.356504052 0.9999904
## 3:s06-6:s01 -3.570870714 -5.547285809 -1.594455620 0.0000000
## 4:s06-6:s01 -2.476004500 -4.533122552 -0.418886448 0.0028515
## 5:s06-6:s01 -1.297991286 -3.274406380  0.678423809 0.7867367
## 6:s06-6:s01  0.144531143 -1.831883952  2.120946237 1.0000000
## 3:s07-6:s01 -2.526785857 -4.503200952 -0.550370763 0.0008502
## 4:s07-6:s01 -1.603608667 -3.660726718  0.453509385 0.4261683
## 5:s07-6:s01 -0.397321429 -2.373736523  1.579093666 1.0000000
## 6:s07-6:s01  1.438616000 -0.537799095  3.415031095 0.5826277
## 3:s08-6:s01 -2.504464286 -4.480879380 -0.528049191 0.0010253
## 4:s08-6:s01 -1.507812571 -3.484227666  0.468602523 0.4754450
## 5:s08-6:s01 -0.363839429 -2.340254523  1.612575666 1.0000000
## 6:s08-6:s01  1.583705000 -0.392710095  3.560120095 0.3648679
## 4:s02-3:s02  0.379929429 -1.677188623  2.437047480 1.0000000
## 5:s02-3:s02  1.161830714 -0.814584380  3.138245809 0.9218774
## 6:s02-3:s02  2.340960143  0.364545048  4.317375237 0.0038409
## 3:s03-3:s02 -1.476562329 -3.452977423  0.499852766 0.5235406
## 4:s03-3:s02 -1.513392771 -3.489807866  0.463022323 0.4669679
## 5:s03-3:s02 -1.820312457 -3.796727552  0.156102637 0.1233608
## 6:s03-3:s02 -0.949218614 -2.925633709  1.027196480 0.9941581
## 3:s04-3:s02  0.627232714 -1.349182380  2.603647809 0.9999980
## 4:s04-3:s02  1.044643286 -0.931771809  3.021058380 0.9774750
## 5:s04-3:s02  1.530134286 -0.446280809  3.506549380 0.4418056
## 6:s04-3:s02  1.476562857 -0.499852237  3.452977952 0.5235398
## 3:s05-3:s02  0.439732000 -1.536683095  2.416147095 1.0000000
## 4:s05-3:s02  0.997768095 -1.059349956  3.054886147 0.9932220
## 5:s05-3:s02  2.410714571  0.434299477  4.387129666 0.0022114
## 6:s05-3:s02  2.909877429  0.852759377  4.966995480 0.0000790
## 3:s06-3:s02  0.039620714 -1.936794380  2.016035809 1.0000000
## 4:s06-3:s02  1.134486929 -0.922631123  3.191604980 0.9617457
## 5:s06-3:s02  2.312500143  0.336085048  4.288915237 0.0047868
## 6:s06-3:s02  3.755022571  1.778607477  5.731437666 0.0000000
## 3:s07-3:s02  1.083705571 -0.892709523  3.060120666 0.9643117
## 4:s07-3:s02  2.006882762 -0.050235290  4.064000813 0.0670524
## 5:s07-3:s02  3.213170000  1.236754905  5.189585095 0.0000014
## 6:s07-3:s02  5.049107429  3.072692334  7.025522523 0.0000000
## 3:s08-3:s02  1.106027143 -0.870387952  3.082442237 0.9545576
## 4:s08-3:s02  2.102678857  0.126263763  4.079093952 0.0219628
## 5:s08-3:s02  3.246652000  1.270236905  5.223067095 0.0000010
## 6:s08-3:s02  5.194196429  3.217781334  7.170611523 0.0000000
## 5:s02-4:s02  0.781901286 -1.275216766  2.839019337 0.9999056
## 6:s02-4:s02  1.961030714 -0.096087337  4.018148766 0.0866984
## 3:s03-4:s02 -1.856491757 -3.913609809  0.200626294 0.1494408
## 4:s03-4:s02 -1.893322200 -3.950440252  0.163795852 0.1241983
## 5:s03-4:s02 -2.200241886 -4.257359937 -0.143123834 0.0203371
## 6:s03-4:s02 -1.329148043 -3.386266094  0.727970009 0.8125648
## 3:s04-4:s02  0.247303286 -1.809814766  2.304421337 1.0000000
## 4:s04-4:s02  0.664713857 -1.392404194  2.721831909 0.9999970
## 5:s04-4:s02  1.150204857 -0.906913194  3.207322909 0.9550071
## 6:s04-4:s02  1.096633429 -0.960484623  3.153751480 0.9748551
## 3:s05-4:s02  0.059802571 -1.997315480  2.116920623 1.0000000
## 4:s05-4:s02  0.617838667 -1.516933623  2.752610957 0.9999998
## 5:s05-4:s02  2.030785143 -0.026332909  4.087903194 0.0584031
## 6:s05-4:s02  2.529948000  0.395175710  4.664720290 0.0038017
## 3:s06-4:s02 -0.340308714 -2.397426766  1.716809337 1.0000000
## 4:s06-4:s02  0.754557500 -1.380214790  2.889329790 0.9999788
## 5:s06-4:s02  1.932570714 -0.124547337  3.989688766 0.1011390
## 6:s06-4:s02  3.375093143  1.317975091  5.432211194 0.0000010
## 3:s07-4:s02  0.703776143 -1.353341909  2.760894194 0.9999894
## 4:s07-4:s02  1.626953333 -0.507818957  3.761725623 0.4778014
## 5:s07-4:s02  2.833240571  0.776122520  4.890358623 0.0001546
## 6:s07-4:s02  4.669178000  2.612059948  6.726296052 0.0000000
## 3:s08-4:s02  0.726097714 -1.331020337  2.783215766 0.9999794
## 4:s08-4:s02  1.722749429 -0.334368623  3.779867480 0.2736429
## 5:s08-4:s02  2.866722571  0.809604520  4.923840623 0.0001155
## 6:s08-4:s02  4.814267000  2.757148948  6.871385052 0.0000000
## 6:s02-5:s02  1.179129429 -0.797285666  3.155544523 0.9091275
## 3:s03-5:s02 -2.638393043 -4.614808137 -0.661977948 0.0003255
## 4:s03-5:s02 -2.675223486 -4.651638580 -0.698808391 0.0002352
## 5:s03-5:s02 -2.982143171 -4.958558266 -1.005728077 0.0000136
## 6:s03-5:s02 -2.111049329 -4.087464423 -0.134634234 0.0207420
## 3:s04-5:s02 -0.534598000 -2.511013095  1.441817095 1.0000000
## 4:s04-5:s02 -0.117187429 -2.093602523  1.859227666 1.0000000
## 5:s04-5:s02  0.368303571 -1.608111523  2.344718666 1.0000000
## 6:s04-5:s02  0.314732143 -1.661682952  2.291147237 1.0000000
## 3:s05-5:s02 -0.722098714 -2.698513809  1.254316380 0.9999576
## 4:s05-5:s02 -0.164062619 -2.221180671  1.893055432 1.0000000
## 5:s05-5:s02  1.248883857 -0.727531237  3.225298952 0.8444785
## 6:s05-5:s02  1.748046714 -0.309071337  3.805164766 0.2461159
## 3:s06-5:s02 -1.122210000 -3.098625095  0.854205095 0.9463512
## 4:s06-5:s02 -0.027343786 -2.084461837  2.029774266 1.0000000
## 5:s06-5:s02  1.150669429 -0.825745666  3.127084523 0.9294258
## 6:s06-5:s02  2.593191857  0.616776763  4.569606952 0.0004824
## 3:s07-5:s02 -0.078125143 -2.054540237  1.898289952 1.0000000
## 4:s07-5:s02  0.845052048 -1.212066004  2.902170099 0.9995809
## 5:s07-5:s02  2.051339286  0.074924191  4.027754380 0.0309718
## 6:s07-5:s02  3.887276714  1.910861620  5.863691809 0.0000000
## 3:s08-5:s02 -0.055803571 -2.032218666  1.920611523 1.0000000
## 4:s08-5:s02  0.940848143 -1.035566952  2.917263237 0.9948977
## 5:s08-5:s02  2.084821286  0.108406191  4.061236380 0.0247864
## 6:s08-5:s02  4.032365714  2.055950620  6.008780809 0.0000000
## 3:s03-6:s02 -3.817522471 -5.793937566 -1.841107377 0.0000000
## 4:s03-6:s02 -3.854352914 -5.830768009 -1.877937820 0.0000000
## 5:s03-6:s02 -4.161272600 -6.137687695 -2.184857505 0.0000000
## 6:s03-6:s02 -3.290178757 -5.266593852 -1.313763663 0.0000006
## 3:s04-6:s02 -1.713727429 -3.690142523  0.262687666 0.2105175
## 4:s04-6:s02 -1.296316857 -3.272731952  0.680098237 0.7888569
## 5:s04-6:s02 -0.810825857 -2.787240952  1.165589237 0.9995910
## 6:s04-6:s02 -0.864397286 -2.840812380  1.112017809 0.9987185
## 3:s05-6:s02 -1.901228143 -3.877643237  0.075186952 0.0785533
## 4:s05-6:s02 -1.343192048 -3.400310099  0.713926004 0.7961470
## 5:s05-6:s02  0.069754429 -1.906660666  2.046169523 1.0000000
## 6:s05-6:s02  0.568917286 -1.488200766  2.626035337 0.9999999
## 3:s06-6:s02 -2.301339429 -4.277754523 -0.324924334 0.0052141
## 4:s06-6:s02 -1.206473214 -3.263591266  0.850644837 0.9237439
## 5:s06-6:s02 -0.028460000 -2.004875095  1.947955095 1.0000000
## 6:s06-6:s02  1.414062429 -0.562352666  3.390477523 0.6206872
## 3:s07-6:s02 -1.257254571 -3.233669666  0.719160523 0.8353148
## 4:s07-6:s02 -0.334077381 -2.391195432  1.723040671 1.0000000
## 5:s07-6:s02  0.872209857 -1.104205237  2.848624952 0.9985052
## 6:s07-6:s02  2.708147286  0.731732191  4.684562380 0.0001753
## 3:s08-6:s02 -1.234933000 -3.211348095  0.741482095 0.8590968
## 4:s08-6:s02 -0.238281286 -2.214696380  1.738133809 1.0000000
## 5:s08-6:s02  0.905691857 -1.070723237  2.882106952 0.9972047
## 6:s08-6:s02  2.853236286  0.876821191  4.829651380 0.0000463
## 4:s03-3:s03 -0.036830443 -2.013245537  1.939584652 1.0000000
## 5:s03-3:s03 -0.343750129 -2.320165223  1.632664966 1.0000000
## 6:s03-3:s03  0.527343714 -1.449071380  2.503758809 1.0000000
## 3:s04-3:s03  2.103795043  0.127379948  4.080210137 0.0217963
## 4:s04-3:s03  2.521205614  0.544790520  4.497620709 0.0008910
## 5:s04-3:s03  3.006696614  1.030281520  4.983111709 0.0000107
## 6:s04-3:s03  2.953125186  0.976710091  4.929540280 0.0000179
## 3:s05-3:s03  1.916294329 -0.060120766  3.892709423 0.0719286
## 4:s05-3:s03  2.474330424  0.417212372  4.531448475 0.0028881
## 5:s05-3:s03  3.887276900  1.910861805  5.863691995 0.0000000
## 6:s05-3:s03  4.386439757  2.329321706  6.443557809 0.0000000
## 3:s06-3:s03  1.516183043 -0.460232052  3.492598137 0.4627449
## 4:s06-3:s03  2.611049257  0.553931206  4.668167309 0.0009903
## 5:s06-3:s03  3.789062471  1.812647377  5.765477566 0.0000000
## 6:s06-3:s03  5.231584900  3.255169805  7.207999995 0.0000000
## 3:s07-3:s03  2.560267900  0.583852805  4.536682995 0.0006400
## 4:s07-3:s03  3.483445090  1.426327039  5.540563142 0.0000003
## 5:s07-3:s03  4.689732329  2.713317234  6.666147423 0.0000000
## 6:s07-3:s03  6.525669757  4.549254663  8.502084852 0.0000000
## 3:s08-3:s03  2.582589471  0.606174377  4.559004566 0.0005286
## 4:s08-3:s03  3.579241186  1.602826091  5.555656280 0.0000000
## 5:s08-3:s03  4.723214329  2.746799234  6.699629423 0.0000000
## 6:s08-3:s03  6.670758757  4.694343663  8.647173852 0.0000000
## 5:s03-4:s03 -0.306919686 -2.283334780  1.669495409 1.0000000
## 6:s03-4:s03  0.564174157 -1.412240937  2.540589252 0.9999998
## 3:s04-4:s03  2.140625486  0.164210391  4.117040580 0.0169044
## 4:s04-4:s03  2.558036057  0.581620963  4.534451152 0.0006523
## 5:s04-4:s03  3.043527057  1.067111963  5.019942152 0.0000074
## 6:s04-4:s03  2.989955629  1.013540534  4.966370723 0.0000126
## 3:s05-4:s03  1.953124771 -0.023290323  3.929539866 0.0576939
## 4:s05-4:s03  2.511160867  0.454042815  4.568278918 0.0021773
## 5:s05-4:s03  3.924107343  1.947692248  5.900522437 0.0000000
## 6:s05-4:s03  4.423270200  2.366152148  6.480388252 0.0000000
## 3:s06-4:s03  1.553013486 -0.423401609  3.529428580 0.4082023
## 4:s06-4:s03  2.647879700  0.590761648  4.704997752 0.0007350
## 5:s06-4:s03  3.825892914  1.849477820  5.802308009 0.0000000
## 6:s06-4:s03  5.268415343  3.292000248  7.244830437 0.0000000
## 3:s07-4:s03  2.597098343  0.620683248  4.573513437 0.0004664
## 4:s07-4:s03  3.520275533  1.463157482  5.577393585 0.0000002
## 5:s07-4:s03  4.726562771  2.750147677  6.702977866 0.0000000
## 6:s07-4:s03  6.562500200  4.586085105  8.538915295 0.0000000
## 3:s08-4:s03  2.619419914  0.643004820  4.595835009 0.0003842
## 4:s08-4:s03  3.616071629  1.639656534  5.592486723 0.0000000
## 5:s08-4:s03  4.760044771  2.783629677  6.736459866 0.0000000
## 6:s08-4:s03  6.707589200  4.731174105  8.684004295 0.0000000
## 6:s03-5:s03  0.871093843 -1.105321252  2.847508937 0.9985375
## 3:s04-5:s03  2.447545171  0.471130077  4.423960266 0.0016408
## 4:s04-5:s03  2.864955743  0.888540648  4.841370837 0.0000415
## 5:s04-5:s03  3.350446743  1.374031648  5.326861837 0.0000003
## 6:s04-5:s03  3.296875314  1.320460220  5.273290409 0.0000006
## 3:s05-5:s03  2.260044457  0.283629363  4.236459552 0.0071245
## 4:s05-5:s03  2.818080552  0.760962501  4.875198604 0.0001763
## 5:s05-5:s03  4.231027029  2.254611934  6.207442123 0.0000000
## 6:s05-5:s03  4.730189886  2.673071834  6.787307937 0.0000000
## 3:s06-5:s03  1.859933171 -0.116481923  3.836348266 0.0993651
## 4:s06-5:s03  2.954799386  0.897681334  5.011917437 0.0000530
## 5:s06-5:s03  4.132812600  2.156397505  6.109227695 0.0000000
## 6:s06-5:s03  5.575335029  3.598919934  7.551750123 0.0000000
## 3:s07-5:s03  2.904018029  0.927602934  4.880433123 0.0000287
## 4:s07-5:s03  3.827195219  1.770077168  5.884313271 0.0000000
## 5:s07-5:s03  5.033482457  3.057067363  7.009897552 0.0000000
## 6:s07-5:s03  6.869419886  4.893004791  8.845834980 0.0000000
## 3:s08-5:s03  2.926339600  0.949924505  4.902754695 0.0000232
## 4:s08-5:s03  3.922991314  1.946576220  5.899406409 0.0000000
## 5:s08-5:s03  5.066964457  3.090549363  7.043379552 0.0000000
## 6:s08-5:s03  7.014508886  5.038093791  8.990923980 0.0000000
## 3:s04-6:s03  1.576451329 -0.399963766  3.552866423 0.3749098
## 4:s04-6:s03  1.993861900  0.017446805  3.970276995 0.0448348
## 5:s04-6:s03  2.479352900  0.502937805  4.455767995 0.0012633
## 6:s04-6:s03  2.425781471  0.449366377  4.402196566 0.0019584
## 3:s05-6:s03  1.388950614 -0.587464480  3.365365709 0.6590146
## 4:s05-6:s03  1.946986710 -0.110131342  4.004104761 0.0935961
## 5:s05-6:s03  3.359933186  1.383518091  5.336348280 0.0000003
## 6:s05-6:s03  3.859096043  1.801977991  5.916214094 0.0000000
## 3:s06-6:s03  0.988839329 -0.987575766  2.965254423 0.9893341
## 4:s06-6:s03  2.083705543  0.026587491  4.140823594 0.0426000
## 5:s06-6:s03  3.261718757  1.285303663  5.238133852 0.0000008
## 6:s06-6:s03  4.704241186  2.727826091  6.680656280 0.0000000
## 3:s07-6:s03  2.032924186  0.056509091  4.009339280 0.0349300
## 4:s07-6:s03  2.956101376  0.898983325  5.013219428 0.0000524
## 5:s07-6:s03  4.162388614  2.185973520  6.138803709 0.0000000
## 6:s07-6:s03  5.998326043  4.021910948  7.974741137 0.0000000
## 3:s08-6:s03  2.055245757  0.078830663  4.031660852 0.0301853
## 4:s08-6:s03  3.051897471  1.075482377  5.028312566 0.0000069
## 5:s08-6:s03  4.195870614  2.219455520  6.172285709 0.0000000
## 6:s08-6:s03  6.143415043  4.166999948  8.119830137 0.0000000
## 4:s04-3:s04  0.417410571 -1.559004523  2.393825666 1.0000000
## 5:s04-3:s04  0.902901571 -1.073513523  2.879316666 0.9973414
## 6:s04-3:s04  0.849330143 -1.127084952  2.825745237 0.9990560
## 3:s05-3:s04 -0.187500714 -2.163915809  1.788914380 1.0000000
## 4:s05-3:s04  0.370535381 -1.686582671  2.427653432 1.0000000
## 5:s05-3:s04  1.783481857 -0.192933237  3.759896952 0.1495769
## 6:s05-3:s04  2.282644714  0.225526663  4.339762766 0.0116495
## 3:s06-3:s04 -0.587612000 -2.564027095  1.388803095 0.9999996
## 4:s06-3:s04  0.507254214 -1.549863837  2.564372266 1.0000000
## 5:s06-3:s04  1.685267429 -0.291147666  3.661682523 0.2398258
## 6:s06-3:s04  3.127789857  1.151374763  5.104204952 0.0000032
## 3:s07-3:s04  0.456472857 -1.519942237  2.432887952 1.0000000
## 4:s07-3:s04  1.379650048 -0.677468004  3.436768099 0.7505035
## 5:s07-3:s04  2.585937286  0.609522191  4.562352380 0.0005136
## 6:s07-3:s04  4.421874714  2.445459620  6.398289809 0.0000000
## 3:s08-3:s04  0.478794429 -1.497620666  2.455209523 1.0000000
## 4:s08-3:s04  1.475446143 -0.500968952  3.451861237 0.5252730
## 5:s08-3:s04  2.619419286  0.643004191  4.595834380 0.0003842
## 6:s08-3:s04  4.566963714  2.590548620  6.543378809 0.0000000
## 5:s04-4:s04  0.485491000 -1.490924095  2.461906095 1.0000000
## 6:s04-4:s04  0.431919571 -1.544495523  2.408334666 1.0000000
## 3:s05-4:s04 -0.604911286 -2.581326380  1.371503809 0.9999991
## 4:s05-4:s04 -0.046875190 -2.103993242  2.010242861 1.0000000
## 5:s05-4:s04  1.366071286 -0.610343809  3.342486380 0.6930747
## 6:s05-4:s04  1.865234143 -0.191883909  3.922352194 0.1431184
## 3:s06-4:s04 -1.005022571 -2.981437666  0.971392523 0.9865977
## 4:s06-4:s04  0.089843643 -1.967274409  2.146961694 1.0000000
## 5:s06-4:s04  1.267856857 -0.708558237  3.244271952 0.8232956
## 6:s06-4:s04  2.710379286  0.733964191  4.686794380 0.0001718
## 3:s07-4:s04  0.039062286 -1.937352809  2.015477380 1.0000000
## 4:s07-4:s04  0.962239476 -1.094878575  3.019357528 0.9961174
## 5:s07-4:s04  2.168526714  0.192111620  4.144941809 0.0138884
## 6:s07-4:s04  4.004464143  2.028049048  5.980879237 0.0000000
## 3:s08-4:s04  0.061383857 -1.915031237  2.037798952 1.0000000
## 4:s08-4:s04  1.058035571 -0.918379523  3.034450666 0.9734785
## 5:s08-4:s04  2.202008714  0.225593620  4.178423809 0.0109228
## 6:s08-4:s04  4.149553143  2.173138048  6.125968237 0.0000000
## 6:s04-5:s04 -0.053571429 -2.029986523  1.922843666 1.0000000
## 3:s05-5:s04 -1.090402286 -3.066817380  0.886012809 0.9615681
## 4:s05-5:s04 -0.532366190 -2.589484242  1.524751861 1.0000000
## 5:s05-5:s04  0.880580286 -1.095834809  2.856995380 0.9982431
## 6:s05-5:s04  1.379743143 -0.677374909  3.436861194 0.7503818
## 3:s06-5:s04 -1.490513571 -3.466928666  0.485901523 0.5019583
## 4:s06-5:s04 -0.395647357 -2.452765409  1.661470694 1.0000000
## 5:s06-5:s04  0.782365857 -1.194049237  2.758780952 0.9997913
## 6:s06-5:s04  2.224888286  0.248473191  4.201303380 0.0092444
## 3:s07-5:s04 -0.446428714 -2.422843809  1.529986380 1.0000000
## 4:s07-5:s04  0.476748476 -1.580369575  2.533866528 1.0000000
## 5:s07-5:s04  1.683035714 -0.293379380  3.659450809 0.2422340
## 6:s07-5:s04  3.518973143  1.542558048  5.495388237 0.0000001
## 3:s08-5:s04 -0.424107143 -2.400522237  1.552307952 1.0000000
## 4:s08-5:s04  0.572544571 -1.403870523  2.548959666 0.9999998
## 5:s08-5:s04  1.716517714 -0.259897380  3.692932809 0.2077842
## 6:s08-5:s04  3.664062143  1.687647048  5.640477237 0.0000000
## 3:s05-6:s04 -1.036830857 -3.013245952  0.939584237 0.9795787
## 4:s05-6:s04 -0.478794762 -2.535912813  1.578323290 1.0000000
## 5:s05-6:s04  0.934151714 -1.042263380  2.910566809 0.9954312
## 6:s05-6:s04  1.433314571 -0.623803480  3.490432623 0.6768025
## 3:s06-6:s04 -1.436942143 -3.413357237  0.539472952 0.5852329
## 4:s06-6:s04 -0.342075929 -2.399193980  1.715042123 1.0000000
## 5:s06-6:s04  0.835937286 -1.140477809  2.812352380 0.9992878
## 6:s06-6:s04  2.278459714  0.302044620  4.254874809 0.0062037
## 3:s07-6:s04 -0.392857286 -2.369272380  1.583557809 1.0000000
## 4:s07-6:s04  0.530319905 -1.526798147  2.587437956 1.0000000
## 5:s07-6:s04  1.736607143 -0.239807952  3.713022237 0.1888411
## 6:s07-6:s04  3.572544571  1.596129477  5.548959666 0.0000000
## 3:s08-6:s04 -0.370535714 -2.346950809  1.605879380 1.0000000
## 4:s08-6:s04  0.626116000 -1.350299095  2.602531095 0.9999981
## 5:s08-6:s04  1.770089143 -0.206325952  3.746504237 0.1601034
## 6:s08-6:s04  3.717633571  1.741218477  5.694048666 0.0000000
## 4:s05-3:s05  0.558036095 -1.499081956  2.615154147 1.0000000
## 5:s05-3:s05  1.970982571 -0.005432523  3.947397666 0.0517104
## 6:s05-3:s05  2.470145429  0.413027377  4.527263480 0.0029815
## 3:s06-3:s05 -0.400111286 -2.376526380  1.576303809 1.0000000
## 4:s06-3:s05  0.694754929 -1.362363123  2.751872980 0.9999920
## 5:s06-3:s05  1.872768143 -0.103646952  3.849183237 0.0924605
## 6:s06-3:s05  3.315290571  1.338875477  5.291705666 0.0000005
## 3:s07-3:s05  0.643973571 -1.332441523  2.620388666 0.9999964
## 4:s07-3:s05  1.567150762 -0.489967290  3.624268813 0.4787109
## 5:s07-3:s05  2.773438000  0.797022905  4.749853095 0.0000970
## 6:s07-3:s05  4.609375429  2.632960334  6.585790523 0.0000000
## 3:s08-3:s05  0.666295143 -1.310119952  2.642710237 0.9999923
## 4:s08-3:s05  1.662946857 -0.313468237  3.639361952 0.2646256
## 5:s08-3:s05  2.806920000  0.830504905  4.783335095 0.0000713
## 6:s08-3:s05  4.754464429  2.778049334  6.730879523 0.0000000
## 5:s05-4:s05  1.412946476 -0.644171575  3.470064528 0.7055391
## 6:s05-4:s05  1.912109333 -0.222662957  4.046881623 0.1599582
## 3:s06-4:s05 -0.958147381 -3.015265432  1.098970671 0.9963705
## 4:s06-4:s05  0.136718833 -1.998053457  2.271491123 1.0000000
## 5:s06-4:s05  1.314732048 -0.742386004  3.371850099 0.8286835
## 6:s06-4:s05  2.757254476  0.700136425  4.814372528 0.0002963
## 3:s07-4:s05  0.085937476 -1.971180575  2.143055528 1.0000000
## 4:s07-4:s05  1.009114667 -1.125657623  3.143886957 0.9954231
## 5:s07-4:s05  2.215401905  0.158283853  4.272519956 0.0183934
## 6:s07-4:s05  4.051339333  1.994221282  6.108457385 0.0000000
## 3:s08-4:s05  0.108259048 -1.948859004  2.165377099 1.0000000
## 4:s08-4:s05  1.104910762 -0.952207290  3.162028813 0.9723395
## 5:s08-4:s05  2.248883905  0.191765853  4.306001956 0.0146849
## 6:s08-4:s05  4.196428333  2.139310282  6.253546385 0.0000000
## 6:s05-5:s05  0.499162857 -1.557955194  2.556280909 1.0000000
## 3:s06-5:s05 -2.371093857 -4.347508952 -0.394678763 0.0030324
## 4:s06-5:s05 -1.276227643 -3.333345694  0.780890409 0.8678632
## 5:s06-5:s05 -0.098214429 -2.074629523  1.878200666 1.0000000
## 6:s06-5:s05  1.344308000 -0.632107095  3.320723095 0.7244360
## 3:s07-5:s05 -1.327009000 -3.303424095  0.649406095 0.7484811
## 4:s07-5:s05 -0.403831810 -2.460949861  1.653286242 1.0000000
## 5:s07-5:s05  0.802455429 -1.173959666  2.778870523 0.9996628
## 6:s07-5:s05  2.638392857  0.661977763  4.614807952 0.0003255
## 3:s08-5:s05 -1.304687429 -3.281102523  0.671727666 0.7781591
## 4:s08-5:s05 -0.308035714 -2.284450809  1.668379380 1.0000000
## 5:s08-5:s05  0.835937429 -1.140477666  2.812352523 0.9992878
## 6:s08-5:s05  2.783481857  0.807066763  4.759896952 0.0000884
## 3:s06-6:s05 -2.870256714 -4.927374766 -0.813138663 0.0001120
## 4:s06-6:s05 -1.775390500 -3.910162790  0.359381790 0.2872777
## 5:s06-6:s05 -0.597377286 -2.654495337  1.459740766 0.9999998
## 6:s06-6:s05  0.845145143 -1.211972909  2.902263194 0.9995801
## 3:s07-6:s05 -1.826171857 -3.883289909  0.230946194 0.1730231
## 4:s07-6:s05 -0.902994667 -3.037766957  1.231777623 0.9992867
## 5:s07-6:s05  0.303292571 -1.753825480  2.360410623 1.0000000
## 6:s07-6:s05  2.139230000  0.082111948  4.196348052 0.0301734
## 3:s08-6:s05 -1.803850286 -3.860968337  0.253267766 0.1920707
## 4:s08-6:s05 -0.807198571 -2.864316623  1.249919480 0.9998238
## 5:s08-6:s05  0.336774571 -1.720343480  2.393892623 1.0000000
## 6:s08-6:s05  2.284319000  0.227200948  4.341437052 0.0115152
## 4:s06-3:s06  1.094866214 -0.962251837  3.151984266 0.9753685
## 5:s06-3:s06  2.272879429  0.296464334  4.249294523 0.0064703
## 6:s06-3:s06  3.715401857  1.738986763  5.691816952 0.0000000
## 3:s07-3:s06  1.044084857 -0.932330237  3.020499952 0.9776307
## 4:s07-3:s06  1.967262048 -0.089856004  4.024380099 0.0837756
## 5:s07-3:s06  3.173549286  1.197134191  5.149964380 0.0000020
## 6:s07-3:s06  5.009486714  3.033071620  6.985901809 0.0000000
## 3:s08-3:s06  1.066406429 -0.910008666  3.042821523 0.9707153
## 4:s08-3:s06  2.063058143  0.086643048  4.039473237 0.0286657
## 5:s08-3:s06  3.207031286  1.230616191  5.183446380 0.0000014
## 6:s08-3:s06  5.154575714  3.178160620  7.130990809 0.0000000
## 5:s06-4:s06  1.178013214 -0.879104837  3.235131266 0.9410126
## 6:s06-4:s06  2.620535643  0.563417591  4.677653694 0.0009175
## 3:s07-4:s06 -0.050781357 -2.107899409  2.006336694 1.0000000
## 4:s07-4:s06  0.872395833 -1.262376457  3.007168123 0.9996194
## 5:s07-4:s06  2.078683071  0.021565020  4.135801123 0.0439197
## 6:s07-4:s06  3.914620500  1.857502448  5.971738552 0.0000000
## 3:s08-4:s06 -0.028459786 -2.085577837  2.028658266 1.0000000
## 4:s08-4:s06  0.968191929 -1.088926123  3.025309980 0.9957227
## 5:s08-4:s06  2.112165071  0.055047020  4.169283123 0.0357591
## 6:s08-4:s06  4.059709500  2.002591448  6.116827552 0.0000000
## 6:s06-5:s06  1.442522429 -0.533892666  3.418937523 0.5765444
## 3:s07-5:s06 -1.228794571 -3.205209666  0.747620523 0.8652654
## 4:s07-5:s06 -0.305617381 -2.362735432  1.751500671 1.0000000
## 5:s07-5:s06  0.900669857 -1.075745237  2.877084952 0.9974465
## 6:s07-5:s06  2.736607286  0.760192191  4.713022380 0.0001356
## 3:s08-5:s06 -1.206473000 -3.182888095  0.769942095 0.8863164
## 4:s08-5:s06 -0.209821286 -2.186236380  1.766593809 1.0000000
## 5:s08-5:s06  0.934151857 -1.042263237  2.910566952 0.9954312
## 6:s08-5:s06  2.881696286  0.905281191  4.858111380 0.0000354
## 3:s07-6:s06 -2.671317000 -4.647732095 -0.694901905 0.0002435
## 4:s07-6:s06 -1.748139810 -3.805257861  0.308978242 0.2460180
## 5:s07-6:s06 -0.541852571 -2.518267666  1.434562523 0.9999999
## 6:s07-6:s06  1.294084857 -0.682330237  3.270499952 0.7916674
## 3:s08-6:s06 -2.648995429 -4.625410523 -0.672580334 0.0002965
## 4:s08-6:s06 -1.652343714 -3.628758809  0.324071380 0.2769574
## 5:s08-6:s06 -0.508370571 -2.484785666  1.468044523 1.0000000
## 6:s08-6:s06  1.439173857 -0.537241237  3.415588952 0.5817593
## 4:s07-3:s07  0.923177190 -1.133940861  2.980295242 0.9980175
## 5:s07-3:s07  2.129464429  0.153049334  4.105879523 0.0182695
## 6:s07-3:s07  3.965401857  1.988986763  5.941816952 0.0000000
## 3:s08-3:s07  0.022321571 -1.954093523  1.998736666 1.0000000
## 4:s08-3:s07  1.018973286 -0.957441809  2.995388380 0.9838073
## 5:s08-3:s07  2.162946429  0.186531334  4.139361523 0.0144490
## 6:s08-3:s07  4.110490857  2.134075763  6.086905952 0.0000000
## 5:s07-4:s07  1.206287238 -0.850830813  3.263405290 0.9238669
## 6:s07-4:s07  3.042224667  0.985106615  5.099342718 0.0000240
## 3:s08-4:s07 -0.900855619 -2.957973671  1.156262432 0.9986897
## 4:s08-4:s07  0.095796095 -1.961321956  2.152914147 1.0000000
## 5:s08-4:s07  1.239769238 -0.817348813  3.296887290 0.8995182
## 6:s08-4:s07  3.187313667  1.130195615  5.244431718 0.0000062
## 6:s07-5:s07  1.835937429 -0.140477666  3.812352523 0.1133981
## 3:s08-5:s07 -2.107142857 -4.083557952 -0.130727763 0.0213039
## 4:s08-5:s07 -1.110491143 -3.086906237  0.865923952 0.9523924
## 5:s08-5:s07  0.033482000 -1.942933095  2.009897095 1.0000000
## 6:s08-5:s07  1.981026429  0.004611334  3.957441523 0.0485869
## 3:s08-6:s07 -3.943080286 -5.919495380 -1.966665191 0.0000000
## 4:s08-6:s07 -2.946428571 -4.922843666 -0.970013477 0.0000191
## 5:s08-6:s07 -1.802455429 -3.778870523  0.173959666 0.1355809
## 6:s08-6:s07  0.145089000 -1.831326095  2.121504095 1.0000000
## 4:s08-3:s08  0.996651714 -0.979763380  2.973066809 0.9880763
## 5:s08-3:s08  2.140624857  0.164209763  4.117039952 0.0169044
## 6:s08-3:s08  4.088169286  2.111754191  6.064584380 0.0000000
## 5:s08-4:s08  1.143973143 -0.832441952  3.120388237 0.9337044
## 6:s08-4:s08  3.091517571  1.115102477  5.067932666 0.0000046
## 6:s08-5:s08  1.947544429 -0.028870666  3.923959523 0.0596818

Problem 4:

ANCOVA

Inference:

In the linear model, only Length and Subject 6 are significant. In the length:subjects, Length - subject 3,4,7 and 8 are significant.

The effect size of length from eta square - 0.243, which means that the length effect is 24.3% on time. The effect size of subject from eta square - 0.474, which means that the subject effect is 47.4% on time.

The effect size of length from omega square - 0.242, which means that the length effect is 24.2% on time. The effect size of subject from omega square - 0.466, which means that the subject effect is 46.6% on time.

Code:

data1 <- read.csv("spokenduration.csv")
data1$length1 <- rowSums(data[,2:12])

LM4<-lm(time~length1*subject,data = data1)
A4<-aov(time~length1*subject,data=data1)

summary(LM4)
## 
## Call:
## lm(formula = time ~ length1 * subject, data = data1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8926 -0.5372 -0.0917  0.2532  7.7347 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.423005   0.775431   1.835  0.06797 .  
## length1             0.777260   0.165903   4.685 5.15e-06 ***
## subjects02         -1.480358   1.076788  -1.375  0.17073    
## subjects03         -0.973507   1.072445  -0.908  0.36510    
## subjects04          0.844742   1.072445   0.788  0.43181    
## subjects05         -1.233145   1.087902  -1.134  0.25835    
## subjects06         -2.689087   1.076788  -2.497  0.01332 *  
## subjects07         -1.999330   1.076788  -1.857  0.06481 .  
## subjects08         -2.081263   1.072445  -1.941  0.05370 .  
## length1:subjects02  0.000225   0.230743   0.001  0.99922    
## length1:subjects03 -0.649749   0.230329  -2.821  0.00527 ** 
## length1:subjects04 -0.473912   0.230329  -2.058  0.04093 *  
## length1:subjects05  0.106404   0.234623   0.454  0.65067    
## length1:subjects06  0.454270   0.230743   1.969  0.05036 .  
## length1:subjects07  0.530359   0.230743   2.298  0.02256 *  
## length1:subjects08  0.563588   0.230329   2.447  0.01527 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9452 on 201 degrees of freedom
## Multiple R-squared:  0.7787, Adjusted R-squared:  0.7622 
## F-statistic: 47.15 on 15 and 201 DF,  p-value: < 2.2e-16
summary(A4)
##                  Df Sum Sq Mean Sq F value   Pr(>F)    
## length1           1  197.1  197.10 220.603  < 2e-16 ***
## subject           7  384.9   54.98  61.541  < 2e-16 ***
## length1:subject   7   49.9    7.12   7.974 1.54e-08 ***
## Residuals       201  179.6    0.89                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(A4,type="II")
Anova(LM4,type="II")
eta_sq(A4)
omega_sq(A4)
TukeyHSD(A4,which='subject')
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: length1
## Warning in replications(paste("~", xx), data = mf): non-factors ignored:
## length1, subject
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = time ~ length1 * subject, data = data1)
## 
## $subject
##                diff         lwr         upr     p adj
## s02-s01 -1.47793460 -2.27350166 -0.68236754 0.0000012
## s03-s01 -3.89466634 -4.68323336 -3.10609933 0.0000000
## s04-s01 -1.28515151 -2.07371853 -0.49658450 0.0000351
## s05-s01 -0.75299582 -1.55603316  0.05004152 0.0838362
## s06-s01 -0.63505264 -1.43061970  0.16051443 0.2257274
## s07-s01  0.39851225 -0.39705481  1.19407931 0.7879385
## s08-s01  0.45759381 -0.33097321  1.24616082 0.6360178
## s03-s02 -2.41673174 -3.19769008 -1.63577341 0.0000000
## s04-s02  0.19278309 -0.58817525  0.97374142 0.9950208
## s05-s02  0.72493878 -0.07062828  1.52050584 0.1030212
## s06-s02  0.84288196  0.05485599  1.63090794 0.0267010
## s07-s02  1.87644685  1.08842088  2.66447282 0.0000000
## s08-s02  1.93552841  1.15457007  2.71648674 0.0000000
## s04-s03  2.60951483  1.83568869  3.38334097 0.0000000
## s05-s03  3.14167052  2.35310351  3.93023754 0.0000000
## s06-s03  3.25961371  2.47865537  4.04057204 0.0000000
## s07-s03  4.29317859  3.51222026  5.07413693 0.0000000
## s08-s03  4.35226015  3.57843401  5.12608629 0.0000000
## s05-s04  0.53215569 -0.25641132  1.32072271 0.4398585
## s06-s04  0.65009888 -0.13085946  1.43105721 0.1810415
## s07-s04  1.68366377  0.90270543  2.46462210 0.0000000
## s08-s04  1.74274532  0.96891918  2.51657146 0.0000000
## s06-s05  0.11794318 -0.67762388  0.91351025 0.9998166
## s07-s05  1.15150807  0.35594101  1.94707513 0.0004004
## s08-s05  1.21058963  0.42202261  1.99915664 0.0001277
## s07-s06  1.03356489  0.24553892  1.82159086 0.0020881
## s08-s06  1.09264644  0.31168811  1.87360478 0.0007324
## s08-s07  0.05908156 -0.72187678  0.84003989 0.9999981