library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(lubridate)
## Warning: package 'lubridate' was built under R version 3.6.2
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
library(ggplot2)

Read Data

stormDataRaw <- read.csv("StormData.csv.bz2")
stormData <- select(stormDataRaw, BGN_DATE, EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP, FATALITIES, INJURIES)

Format the BGN_DATE variable as a date

stormData$BGN_DATE <- as.Date(stormData$BGN_DATE, "%m/%d/%Y")
stormData$YEAR <- year(stormData$BGN_DATE)
Tornado 1950 - 1954
Tornado, Thunderstorm Wind, Hail 1955 - 1995
48 Events since 1996
Only use events since 1996
stormData <- filter(stormData, YEAR >= 1996)

Only use events with either health impact or economic damage

stormData <- filter(stormData, PROPDMG > 0 | CROPDMG > 0 | FATALITIES > 0 | INJURIES > 0)

table(stormData$PROPDMGEXP)
## 
##             -      ?      +      0      1      2      3      4      5      6 
##   8448      0      0      0      0      0      0      0      0      0      0 
##      7      8      B      h      H      K      m      M 
##      0      0     32      0      0 185474      0   7364
table(stormData$CROPDMGEXP)
## 
##             ?      0      2      B      k      K      m      M 
## 102767      0      0      0      2      0  96787      0   1762
stormData$PROPDMGEXP <- toupper(stormData$PROPDMGEXP)
stormData$CROPDMGEXP <- toupper(stormData$CROPDMGEXP)

stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "")] <- 10^0
stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "?")] <- 10^0
stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "0")] <- 10^0
stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "2")] <- 10^2
stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "K")] <- 10^3
stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "M")] <- 10^6
stormData$CROPDMGFACTOR[(stormData$CROPDMGEXP == "B")] <- 10^9

stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "")] <- 10^0
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "-")] <- 10^0
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "?")] <- 10^0
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "+")] <- 10^0
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "0")] <- 10^0
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "1")] <- 10^1
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "2")] <- 10^2
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "3")] <- 10^3
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "4")] <- 10^4
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "5")] <- 10^5
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "6")] <- 10^6
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "7")] <- 10^7
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "8")] <- 10^8
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "H")] <- 10^2
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "K")] <- 10^3
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "M")] <- 10^6
stormData$PROPDMGFACTOR[(stormData$PROPDMGEXP == "B")] <- 10^9
stormData <- mutate(stormData, HEALTHIMP = FATALITIES + INJURIES)
stormData <- mutate(stormData, ECONOMICCOST = PROPDMG * PROPDMGFACTOR + CROPDMG * CROPDMGFACTOR)


stormData$EVTYPE <- toupper(stormData$EVTYPE)
dim(data.frame(table(stormData$EVTYPE)))
## [1] 186   2
evtypeUnique <- unique(stormData$EVTYPE)
evtypeUnique[grep("THUND", evtypeUnique)]
## [1] "THUNDERSTORM"             "THUNDERSTORM WIND (G40)" 
## [3] "THUNDERSTORM WIND"        "MARINE THUNDERSTORM WIND"
healthImpact <- with(stormData, aggregate(HEALTHIMP ~ EVTYPE, FUN = sum))
subset(healthImpact, HEALTHIMP > quantile(HEALTHIMP, prob = 0.95))
##                EVTYPE HEALTHIMP
## 39     EXCESSIVE HEAT      8188
## 46        FLASH FLOOD      2561
## 48              FLOOD      7172
## 69               HEAT      1459
## 88  HURRICANE/TYPHOON      1339
## 107         LIGHTNING      4792
## 146 THUNDERSTORM WIND      1530
## 149           TORNADO     22178
## 153         TSTM WIND      3870
## 182      WINTER STORM      1483
stormData$EVTYPE[(stormData$EVTYPE == "TSTM WIND")] <- "THUNDERSTORM WIND"
stormData$EVTYPE[(stormData$EVTYPE == "HURRICANE/TYPHOON")] <- "HURRICANE (TYPHOON)"


economicCost <- with(stormData, aggregate(ECONOMICCOST ~ EVTYPE, FUN = sum))
subset(economicCost, ECONOMICCOST > quantile(ECONOMICCOST, prob = 0.95))
##                  EVTYPE ECONOMICCOST
## 32              DROUGHT  14413667000
## 46          FLASH FLOOD  16557105610
## 48                FLOOD 148919611950
## 66                 HAIL  17071172870
## 86            HURRICANE  14554229010
## 87  HURRICANE (TYPHOON)  71913712800
## 141         STORM SURGE  43193541000
## 146   THUNDERSTORM WIND   8812957230
## 149             TORNADO  24900370720
## 152      TROPICAL STORM   8320186550
stormData$EVTYPE[(stormData$EVTYPE == "HURRICANE")] <- "HURRICANE (TYPHOON)"
stormData$EVTYPE[(stormData$EVTYPE == "STORM SURGE")] <- "STORM SURGE/TIDE"




healthImpact <- stormData %>% 
        group_by(EVTYPE) %>% 
        summarise(HEALTHIMP = sum(HEALTHIMP)) %>% 
        arrange(desc(HEALTHIMP))
#healthImpact[1:10,]
j1 <- ggplot(healthImpact[1:10,], aes(x=reorder(EVTYPE, -HEALTHIMP),y=HEALTHIMP,color=EVTYPE)) + 
        geom_bar(stat="identity", fill="white") + 
        theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
        xlab("Event") + ylab("Number of fatalities and injuries") +
        theme(legend.position="none") +
        ggtitle("Fatalities and injuries in the US caused by severe weather events")
j1

economicCost <- stormData %>% 
        group_by(EVTYPE) %>% 
        summarise(ECONOMICCOST = sum(ECONOMICCOST)) %>% 
        arrange(desc(ECONOMICCOST))
#economicCost[1:10,]
g1 <- ggplot(economicCost[1:10,], aes(x=reorder(EVTYPE, -ECONOMICCOST),y=ECONOMICCOST,color=EVTYPE)) + 
        geom_bar(stat="identity", fill="white") + 
        theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
        xlab("Event") + ylab("Economic cost in USD") +
        theme(legend.position="none") +
        ggtitle("Economic cost in the US caused by severe weather events")
g1