Fórmula: K=1+3.322(log N) /* Logaritmo de base 10 */
intervaloSugerido <-1 + 3.3222* (log10(n))
intervaloSugerido
## [1] 10.9666
nointervalos <- nclass.Sturges(datos)
nointervalos
## [1] 11
cut(datos, breaks = nointervalos)
## [1] (89.1,91.8] (94.5,97.3] (78.2,80.9] (70,72.7] (78.2,80.9] (86.4,89.1]
## [7] (75.5,78.2] (72.7,75.5] (83.6,86.4] (86.4,89.1] (86.4,89.1] (91.8,94.5]
## [13] (78.2,80.9] (97.3,100] (70,72.7] (91.8,94.5] (97.3,100] (97.3,100]
## [19] (86.4,89.1] (78.2,80.9] (97.3,100] (72.7,75.5] (83.6,86.4] (83.6,86.4]
## [25] (97.3,100] (89.1,91.8] (94.5,97.3] (94.5,97.3] (89.1,91.8] (70,72.7]
## [31] (75.5,78.2] (78.2,80.9] (97.3,100] (91.8,94.5] (83.6,86.4] (72.7,75.5]
## [37] (91.8,94.5] (89.1,91.8] (89.1,91.8] (80.9,83.6] (89.1,91.8] (75.5,78.2]
## [43] (70,72.7] (78.2,80.9] (86.4,89.1] (94.5,97.3] (83.6,86.4] (83.6,86.4]
## [49] (91.8,94.5] (80.9,83.6] (94.5,97.3] (78.2,80.9] (97.3,100] (97.3,100]
## [55] (97.3,100] (89.1,91.8] (75.5,78.2] (91.8,94.5] (91.8,94.5] (91.8,94.5]
## [61] (97.3,100] (89.1,91.8] (80.9,83.6] (72.7,75.5] (94.5,97.3] (70,72.7]
## [67] (80.9,83.6] (94.5,97.3] (78.2,80.9] (80.9,83.6] (70,72.7] (72.7,75.5]
## [73] (89.1,91.8] (97.3,100] (80.9,83.6] (72.7,75.5] (91.8,94.5] (86.4,89.1]
## [79] (94.5,97.3] (91.8,94.5] (83.6,86.4] (91.8,94.5] (83.6,86.4] (80.9,83.6]
## [85] (80.9,83.6] (91.8,94.5] (94.5,97.3] (91.8,94.5] (75.5,78.2] (80.9,83.6]
## [91] (72.7,75.5] (78.2,80.9] (94.5,97.3] (72.7,75.5] (78.2,80.9] (94.5,97.3]
## [97] (70,72.7] (86.4,89.1] (72.7,75.5] (75.5,78.2] (97.3,100] (72.7,75.5]
## [103] (97.3,100] (75.5,78.2] (78.2,80.9] (83.6,86.4] (72.7,75.5] (80.9,83.6]
## [109] (86.4,89.1] (78.2,80.9] (91.8,94.5] (70,72.7] (72.7,75.5] (94.5,97.3]
## [115] (97.3,100] (78.2,80.9] (97.3,100] (91.8,94.5] (89.1,91.8] (97.3,100]
## [121] (78.2,80.9] (78.2,80.9] (94.5,97.3] (86.4,89.1] (97.3,100] (80.9,83.6]
## [127] (70,72.7] (97.3,100] (83.6,86.4] (83.6,86.4] (91.8,94.5] (86.4,89.1]
## [133] (86.4,89.1] (75.5,78.2] (83.6,86.4] (94.5,97.3] (80.9,83.6] (86.4,89.1]
## [139] (83.6,86.4] (94.5,97.3] (86.4,89.1] (97.3,100] (80.9,83.6] (70,72.7]
## [145] (89.1,91.8] (94.5,97.3] (83.6,86.4] (78.2,80.9] (78.2,80.9] (70,72.7]
## [151] (91.8,94.5] (97.3,100] (91.8,94.5] (89.1,91.8] (91.8,94.5] (70,72.7]
## [157] (91.8,94.5] (80.9,83.6] (89.1,91.8] (80.9,83.6] (97.3,100] (86.4,89.1]
## [163] (78.2,80.9] (89.1,91.8] (83.6,86.4] (80.9,83.6] (83.6,86.4] (75.5,78.2]
## [169] (80.9,83.6] (72.7,75.5] (94.5,97.3] (83.6,86.4] (70,72.7] (80.9,83.6]
## [175] (80.9,83.6] (80.9,83.6] (78.2,80.9] (75.5,78.2] (75.5,78.2] (70,72.7]
## [181] (80.9,83.6] (78.2,80.9] (94.5,97.3] (86.4,89.1] (86.4,89.1] (97.3,100]
## [187] (94.5,97.3] (91.8,94.5] (75.5,78.2] (70,72.7] (97.3,100] (83.6,86.4]
## [193] (89.1,91.8] (86.4,89.1] (78.2,80.9] (83.6,86.4] (97.3,100] (83.6,86.4]
## [199] (75.5,78.2] (94.5,97.3] (91.8,94.5] (97.3,100] (89.1,91.8] (86.4,89.1]
## [205] (75.5,78.2] (80.9,83.6] (83.6,86.4] (89.1,91.8] (70,72.7] (70,72.7]
## [211] (97.3,100] (78.2,80.9] (75.5,78.2] (70,72.7] (75.5,78.2] (78.2,80.9]
## [217] (83.6,86.4] (86.4,89.1] (75.5,78.2] (94.5,97.3] (83.6,86.4] (80.9,83.6]
## [223] (70,72.7] (86.4,89.1] (80.9,83.6] (91.8,94.5] (91.8,94.5] (86.4,89.1]
## [229] (86.4,89.1] (94.5,97.3] (75.5,78.2] (80.9,83.6] (86.4,89.1] (83.6,86.4]
## [235] (80.9,83.6] (75.5,78.2] (70,72.7] (97.3,100] (91.8,94.5] (91.8,94.5]
## [241] (78.2,80.9] (89.1,91.8] (83.6,86.4] (83.6,86.4] (91.8,94.5] (97.3,100]
## [247] (91.8,94.5] (91.8,94.5] (70,72.7] (80.9,83.6] (91.8,94.5] (89.1,91.8]
## [253] (72.7,75.5] (70,72.7] (75.5,78.2] (80.9,83.6] (89.1,91.8] (80.9,83.6]
## [259] (75.5,78.2] (97.3,100] (72.7,75.5] (80.9,83.6] (80.9,83.6] (97.3,100]
## [265] (83.6,86.4] (97.3,100] (94.5,97.3] (75.5,78.2] (72.7,75.5] (80.9,83.6]
## [271] (94.5,97.3] (97.3,100] (94.5,97.3] (72.7,75.5] (72.7,75.5] (97.3,100]
## [277] (83.6,86.4] (70,72.7] (83.6,86.4] (75.5,78.2] (97.3,100] (75.5,78.2]
## [283] (89.1,91.8] (75.5,78.2] (80.9,83.6] (75.5,78.2] (83.6,86.4] (94.5,97.3]
## [289] (80.9,83.6] (83.6,86.4] (89.1,91.8] (89.1,91.8] (97.3,100] (70,72.7]
## [295] (75.5,78.2] (89.1,91.8] (89.1,91.8] (78.2,80.9] (97.3,100] (70,72.7]
## [301] (86.4,89.1] (97.3,100] (78.2,80.9] (80.9,83.6] (72.7,75.5] (70,72.7]
## [307] (70,72.7] (80.9,83.6] (86.4,89.1] (70,72.7] (83.6,86.4] (75.5,78.2]
## [313] (70,72.7] (94.5,97.3] (91.8,94.5] (83.6,86.4] (80.9,83.6] (89.1,91.8]
## [319] (75.5,78.2] (75.5,78.2] (91.8,94.5] (86.4,89.1] (80.9,83.6] (75.5,78.2]
## [325] (83.6,86.4] (97.3,100] (75.5,78.2] (72.7,75.5] (94.5,97.3] (91.8,94.5]
## [331] (83.6,86.4] (70,72.7] (75.5,78.2] (72.7,75.5] (80.9,83.6] (75.5,78.2]
## [337] (78.2,80.9] (91.8,94.5] (86.4,89.1] (83.6,86.4] (70,72.7] (72.7,75.5]
## [343] (83.6,86.4] (83.6,86.4] (72.7,75.5] (80.9,83.6] (97.3,100] (83.6,86.4]
## [349] (94.5,97.3] (83.6,86.4] (70,72.7] (89.1,91.8] (75.5,78.2] (72.7,75.5]
## [355] (80.9,83.6] (75.5,78.2] (70,72.7] (72.7,75.5] (75.5,78.2] (94.5,97.3]
## [361] (72.7,75.5] (91.8,94.5] (83.6,86.4] (86.4,89.1] (83.6,86.4] (78.2,80.9]
## [367] (86.4,89.1] (75.5,78.2] (75.5,78.2] (86.4,89.1] (91.8,94.5] (97.3,100]
## [373] (70,72.7] (89.1,91.8] (94.5,97.3] (86.4,89.1] (83.6,86.4] (75.5,78.2]
## [379] (72.7,75.5] (91.8,94.5] (97.3,100] (80.9,83.6] (91.8,94.5] (80.9,83.6]
## [385] (75.5,78.2] (70,72.7] (83.6,86.4] (83.6,86.4] (91.8,94.5] (97.3,100]
## [391] (91.8,94.5] (83.6,86.4] (75.5,78.2] (97.3,100] (91.8,94.5] (75.5,78.2]
## [397] (97.3,100] (83.6,86.4] (94.5,97.3] (78.2,80.9] (97.3,100] (70,72.7]
## [403] (75.5,78.2] (91.8,94.5] (80.9,83.6] (94.5,97.3] (89.1,91.8] (97.3,100]
## [409] (89.1,91.8] (91.8,94.5] (75.5,78.2] (83.6,86.4] (94.5,97.3] (72.7,75.5]
## [415] (83.6,86.4] (78.2,80.9] (75.5,78.2] (75.5,78.2] (97.3,100] (70,72.7]
## [421] (83.6,86.4] (75.5,78.2] (83.6,86.4] (75.5,78.2] (86.4,89.1] (97.3,100]
## [427] (75.5,78.2] (83.6,86.4] (70,72.7] (91.8,94.5] (78.2,80.9] (97.3,100]
## [433] (72.7,75.5] (75.5,78.2] (86.4,89.1] (80.9,83.6] (91.8,94.5] (94.5,97.3]
## [439] (86.4,89.1] (94.5,97.3] (86.4,89.1] (91.8,94.5] (89.1,91.8] (89.1,91.8]
## [445] (89.1,91.8] (72.7,75.5] (91.8,94.5] (83.6,86.4] (75.5,78.2] (97.3,100]
## [451] (83.6,86.4] (97.3,100] (86.4,89.1] (78.2,80.9] (72.7,75.5] (70,72.7]
## [457] (72.7,75.5] (75.5,78.2] (91.8,94.5] (70,72.7] (72.7,75.5] (80.9,83.6]
## [463] (89.1,91.8] (72.7,75.5] (80.9,83.6] (80.9,83.6] (78.2,80.9] (75.5,78.2]
## [469] (80.9,83.6] (83.6,86.4] (86.4,89.1] (80.9,83.6] (86.4,89.1] (78.2,80.9]
## [475] (91.8,94.5] (83.6,86.4] (83.6,86.4] (78.2,80.9] (94.5,97.3] (83.6,86.4]
## [481] (78.2,80.9] (80.9,83.6] (94.5,97.3] (70,72.7] (80.9,83.6] (91.8,94.5]
## [487] (83.6,86.4] (80.9,83.6] (91.8,94.5] (97.3,100] (70,72.7] (86.4,89.1]
## [493] (94.5,97.3] (72.7,75.5] (75.5,78.2] (86.4,89.1] (89.1,91.8] (70,72.7]
## [499] (83.6,86.4] (94.5,97.3] (83.6,86.4] (83.6,86.4] (75.5,78.2] (72.7,75.5]
## [505] (70,72.7] (91.8,94.5] (86.4,89.1] (72.7,75.5] (72.7,75.5] (86.4,89.1]
## [511] (97.3,100] (72.7,75.5] (86.4,89.1] (70,72.7] (89.1,91.8] (72.7,75.5]
## [517] (75.5,78.2] (70,72.7] (86.4,89.1] (83.6,86.4] (80.9,83.6] (94.5,97.3]
## [523] (91.8,94.5] (91.8,94.5] (86.4,89.1] (86.4,89.1] (83.6,86.4] (78.2,80.9]
## [529] (75.5,78.2] (89.1,91.8] (75.5,78.2] (86.4,89.1] (80.9,83.6] (86.4,89.1]
## [535] (91.8,94.5] (72.7,75.5] (83.6,86.4] (83.6,86.4] (83.6,86.4] (86.4,89.1]
## [541] (78.2,80.9] (94.5,97.3] (97.3,100] (75.5,78.2] (75.5,78.2] (86.4,89.1]
## [547] (86.4,89.1] (94.5,97.3] (75.5,78.2] (75.5,78.2] (70,72.7] (80.9,83.6]
## [553] (94.5,97.3] (70,72.7] (89.1,91.8] (70,72.7] (72.7,75.5] (94.5,97.3]
## [559] (72.7,75.5] (97.3,100] (94.5,97.3] (72.7,75.5] (83.6,86.4] (72.7,75.5]
## [565] (97.3,100] (70,72.7] (83.6,86.4] (89.1,91.8] (80.9,83.6] (89.1,91.8]
## [571] (97.3,100] (72.7,75.5] (75.5,78.2] (80.9,83.6] (83.6,86.4] (83.6,86.4]
## [577] (80.9,83.6] (83.6,86.4] (89.1,91.8] (80.9,83.6] (97.3,100] (97.3,100]
## [583] (80.9,83.6] (86.4,89.1] (97.3,100] (78.2,80.9] (70,72.7] (78.2,80.9]
## [589] (80.9,83.6] (83.6,86.4] (94.5,97.3] (91.8,94.5] (91.8,94.5] (70,72.7]
## [595] (97.3,100] (83.6,86.4] (70,72.7] (89.1,91.8] (89.1,91.8] (89.1,91.8]
## [601] (97.3,100] (70,72.7] (83.6,86.4] (70,72.7] (75.5,78.2] (94.5,97.3]
## [607] (86.4,89.1] (78.2,80.9] (72.7,75.5] (75.5,78.2] (72.7,75.5] (75.5,78.2]
## [613] (80.9,83.6] (75.5,78.2] (94.5,97.3] (70,72.7] (94.5,97.3] (91.8,94.5]
## [619] (75.5,78.2] (75.5,78.2] (78.2,80.9] (86.4,89.1] (86.4,89.1] (70,72.7]
## [625] (89.1,91.8] (83.6,86.4] (83.6,86.4] (86.4,89.1] (75.5,78.2] (83.6,86.4]
## [631] (75.5,78.2] (94.5,97.3] (70,72.7] (86.4,89.1] (89.1,91.8] (86.4,89.1]
## [637] (89.1,91.8] (94.5,97.3] (91.8,94.5] (97.3,100] (89.1,91.8] (91.8,94.5]
## [643] (78.2,80.9] (94.5,97.3] (94.5,97.3] (83.6,86.4] (83.6,86.4] (72.7,75.5]
## [649] (72.7,75.5] (70,72.7] (97.3,100] (75.5,78.2] (72.7,75.5] (80.9,83.6]
## [655] (72.7,75.5] (70,72.7] (94.5,97.3] (86.4,89.1] (86.4,89.1] (97.3,100]
## [661] (97.3,100] (70,72.7] (75.5,78.2] (80.9,83.6] (80.9,83.6] (86.4,89.1]
## [667] (91.8,94.5] (75.5,78.2] (89.1,91.8] (72.7,75.5] (80.9,83.6] (83.6,86.4]
## [673] (70,72.7] (97.3,100] (70,72.7] (97.3,100] (94.5,97.3] (75.5,78.2]
## [679] (91.8,94.5] (89.1,91.8] (78.2,80.9] (97.3,100] (75.5,78.2] (91.8,94.5]
## [685] (70,72.7] (94.5,97.3] (75.5,78.2] (83.6,86.4] (72.7,75.5] (70,72.7]
## [691] (70,72.7] (72.7,75.5] (91.8,94.5] (89.1,91.8] (70,72.7] (75.5,78.2]
## [697] (86.4,89.1] (72.7,75.5] (78.2,80.9] (75.5,78.2] (70,72.7] (72.7,75.5]
## [703] (72.7,75.5] (80.9,83.6] (91.8,94.5] (78.2,80.9] (89.1,91.8] (89.1,91.8]
## [709] (97.3,100] (70,72.7] (94.5,97.3] (70,72.7] (70,72.7] (91.8,94.5]
## [715] (70,72.7] (80.9,83.6] (91.8,94.5] (89.1,91.8] (89.1,91.8] (86.4,89.1]
## [721] (83.6,86.4] (94.5,97.3] (86.4,89.1] (78.2,80.9] (86.4,89.1] (75.5,78.2]
## [727] (70,72.7] (91.8,94.5] (78.2,80.9] (75.5,78.2] (70,72.7] (86.4,89.1]
## [733] (72.7,75.5] (72.7,75.5] (72.7,75.5] (94.5,97.3] (75.5,78.2] (80.9,83.6]
## [739] (72.7,75.5] (72.7,75.5] (80.9,83.6] (78.2,80.9] (97.3,100] (94.5,97.3]
## [745] (78.2,80.9] (97.3,100] (86.4,89.1] (89.1,91.8] (89.1,91.8] (91.8,94.5]
## [751] (97.3,100] (72.7,75.5] (89.1,91.8] (80.9,83.6] (91.8,94.5] (89.1,91.8]
## [757] (97.3,100] (86.4,89.1] (78.2,80.9] (97.3,100] (70,72.7] (83.6,86.4]
## [763] (91.8,94.5] (97.3,100] (78.2,80.9] (94.5,97.3] (89.1,91.8] (97.3,100]
## [769] (91.8,94.5] (91.8,94.5] (80.9,83.6] (94.5,97.3] (89.1,91.8] (94.5,97.3]
## [775] (86.4,89.1] (94.5,97.3] (94.5,97.3] (75.5,78.2] (91.8,94.5] (83.6,86.4]
## [781] (83.6,86.4] (91.8,94.5] (91.8,94.5] (72.7,75.5] (70,72.7] (94.5,97.3]
## [787] (91.8,94.5] (72.7,75.5] (80.9,83.6] (83.6,86.4] (97.3,100] (70,72.7]
## [793] (72.7,75.5] (94.5,97.3] (72.7,75.5] (70,72.7] (83.6,86.4] (91.8,94.5]
## [799] (89.1,91.8] (70,72.7] (86.4,89.1] (70,72.7] (78.2,80.9] (89.1,91.8]
## [805] (91.8,94.5] (94.5,97.3] (80.9,83.6] (80.9,83.6] (70,72.7] (70,72.7]
## [811] (89.1,91.8] (97.3,100] (83.6,86.4] (89.1,91.8] (72.7,75.5] (75.5,78.2]
## [817] (91.8,94.5] (91.8,94.5] (75.5,78.2] (94.5,97.3] (80.9,83.6] (83.6,86.4]
## [823] (70,72.7] (86.4,89.1] (70,72.7] (75.5,78.2] (75.5,78.2] (78.2,80.9]
## [829] (97.3,100] (72.7,75.5] (94.5,97.3] (80.9,83.6] (83.6,86.4] (72.7,75.5]
## [835] (94.5,97.3] (72.7,75.5] (97.3,100] (86.4,89.1] (94.5,97.3] (89.1,91.8]
## [841] (80.9,83.6] (89.1,91.8] (97.3,100] (94.5,97.3] (75.5,78.2] (91.8,94.5]
## [847] (75.5,78.2] (94.5,97.3] (75.5,78.2] (70,72.7] (70,72.7] (83.6,86.4]
## [853] (75.5,78.2] (80.9,83.6] (80.9,83.6] (94.5,97.3] (80.9,83.6] (83.6,86.4]
## [859] (70,72.7] (83.6,86.4] (86.4,89.1] (72.7,75.5] (94.5,97.3] (97.3,100]
## [865] (83.6,86.4] (91.8,94.5] (86.4,89.1] (72.7,75.5] (80.9,83.6] (91.8,94.5]
## [871] (97.3,100] (89.1,91.8] (80.9,83.6] (91.8,94.5] (80.9,83.6] (94.5,97.3]
## [877] (80.9,83.6] (70,72.7] (97.3,100] (91.8,94.5] (80.9,83.6] (86.4,89.1]
## [883] (72.7,75.5] (72.7,75.5] (78.2,80.9] (75.5,78.2] (91.8,94.5] (97.3,100]
## [889] (70,72.7] (75.5,78.2] (83.6,86.4] (83.6,86.4] (75.5,78.2] (94.5,97.3]
## [895] (70,72.7] (80.9,83.6] (97.3,100] (72.7,75.5] (89.1,91.8] (78.2,80.9]
## [901] (94.5,97.3] (83.6,86.4] (75.5,78.2] (94.5,97.3] (83.6,86.4] (72.7,75.5]
## [907] (83.6,86.4] (75.5,78.2] (97.3,100] (70,72.7] (94.5,97.3] (75.5,78.2]
## [913] (80.9,83.6] (91.8,94.5] (80.9,83.6] (70,72.7] (86.4,89.1] (80.9,83.6]
## [919] (94.5,97.3] (86.4,89.1] (72.7,75.5] (97.3,100] (75.5,78.2] (83.6,86.4]
## [925] (70,72.7] (83.6,86.4] (83.6,86.4] (70,72.7] (86.4,89.1] (75.5,78.2]
## [931] (86.4,89.1] (72.7,75.5] (80.9,83.6] (94.5,97.3] (75.5,78.2] (97.3,100]
## [937] (80.9,83.6] (83.6,86.4] (80.9,83.6] (91.8,94.5] (75.5,78.2] (72.7,75.5]
## [943] (75.5,78.2] (70,72.7] (91.8,94.5] (89.1,91.8] (89.1,91.8] (97.3,100]
## [949] (89.1,91.8] (72.7,75.5] (94.5,97.3] (83.6,86.4] (91.8,94.5] (91.8,94.5]
## [955] (83.6,86.4] (78.2,80.9] (75.5,78.2] (72.7,75.5] (86.4,89.1] (78.2,80.9]
## [961] (86.4,89.1] (83.6,86.4] (80.9,83.6] (94.5,97.3] (94.5,97.3] (78.2,80.9]
## [967] (86.4,89.1] (83.6,86.4] (78.2,80.9] (89.1,91.8] (78.2,80.9] (80.9,83.6]
## [973] (94.5,97.3] (83.6,86.4] (78.2,80.9] (72.7,75.5] (80.9,83.6] (94.5,97.3]
## [979] (94.5,97.3] (94.5,97.3] (91.8,94.5] (91.8,94.5] (72.7,75.5] (91.8,94.5]
## [985] (94.5,97.3] (94.5,97.3] (94.5,97.3] (78.2,80.9] (75.5,78.2] (75.5,78.2]
## [991] (72.7,75.5] (86.4,89.1] (80.9,83.6] (72.7,75.5] (86.4,89.1] (72.7,75.5]
## [997] (72.7,75.5] (91.8,94.5] (86.4,89.1] (86.4,89.1]
## 11 Levels: (70,72.7] (72.7,75.5] (75.5,78.2] (78.2,80.9] ... (97.3,100]
tabla.intervalos <- transform(table(cut(datos, breaks = nointervalos)))
tabla.intervalos
## Var1 Freq
## 1 (70,72.7] 95
## 2 (72.7,75.5] 89
## 3 (75.5,78.2] 106
## 4 (78.2,80.9] 63
## 5 (80.9,83.6] 98
## 6 (83.6,86.4] 109
## 7 (86.4,89.1] 86
## 8 (89.1,91.8] 73
## 9 (91.8,94.5] 96
## 10 (94.5,97.3] 94
## 11 (97.3,100] 91
pie(tabla.intervalos$Freq, labels = paste(tabla.intervalos$Var1, " - ", tabla.intervalos$Freq), main = "¿De cuál intervalo hay más y menos elementos?. Sturges")

——–
INTERPRETACION DE LOS DATOS
Como los datos fueron generados de manera aleatoria sin un motivo especifico no significan por si solos como tal pero el hecho de poder apreciarlos de esta manera nos permite visuzliar perfectamente un caso cuando tenemos muchos muestras.
Como nosoros tenemos muchas muestras y trabajar de manera individual con cada una de ellas seria algo muy tardo para los fines practicos que necesitamos, lo que hacemos es agrupar los datos por clases con un rango detrminado que nos permite juntar datos y manejarlos con el menor numero de variables posibles. Al dividir los datos por clases nosotros podemos hacerlo bajo nuestro propio criterio, pero lo mejor y lo mas optimo es dividir las secciones y determinar el numero de clases bajo la REGLA DE STURGES que nos permite determinar en base a N muestras cual seria el rango ideal para cada clases, dejandonos asi una forma de manejar los datos de manera comoda y sencilla, pudiendo trabajar con medidas de tendencia central sin tanta dispercion y facilitando el trabajo de interpretar los datos, ademas que permite una mejor interpretacion de los datos al tener menos variables en juego, pudiendo apreciar de manera mas sencilla los datos de manera grafica, ya que al manejarlos de manera desordenada sin una clases de por medio solo complicaria mas la utilizacion de la informacion. Es por la comodidad de esto que el dividir los datos por clases se ha vuelto algo muy recurrente, por ejemplo al agrupar a personas de cierto rango de edad para no poner todos las edades y mas cuando la variable edades no es lo mas importante, por lo que podemos inferir que el separar los datos por clases nos sirve para reducir y facilitar la informacion tanto al que maneja los datos como para el que los visualiza.
——–
——–
——–