library(matlib)
library(MASS)
require(plotrix)
require(grid)
library(ggplot2)
require(ggthemes)
require(combinat)
red_marbles <- 54
white_marbles <- 9
blue_marbles <- 75
Tot_marbles <- red_marbles+white_marbles+blue_marbles
Pred <- round(red_marbles/Tot_marbles,4)
#probability of pulling red marble
Pblue <- round(blue_marbles/Tot_marbles,4)
#probability of pulling blue marble
# P(red or blue) = P(red) + P(blue)
round(Pred + Pblue, 4)
## [1] 0.9348
g <- 19
r <- 20
b <-24
y <- 17
tot <- g+r+b+y
Pr <- round(r/tot,4)
Pr
## [1] 0.25
A)Dependent B) Independent
Ans: (A) Dependent
C(n,k) = \(\frac{n!}{(n-k)!k!}\)
Ctot = \(\frac{8!}{(8-3)!3!}\) \(\frac{7!}{(7-3)!3!}\) \(\frac{3!}{(3-1)!1!}\)
wraps <- (factorial(8)/(factorial(5)*factorial(3)))*(factorial(7)/(factorial(4)*factorial(3)))*(factorial(3)/(factorial(2)*factorial(1)))
wraps
## [1] 5880
Determine if the following events are independent. Jeff runs out of gas on the way to work. Liz watches the evening news.
Ans: B)Independent
One event does NOT affect another event
P(n,k) = \(\frac{n!}{(n-k)!}\)
P(14,8) = \(\frac{14!}{(14-8)!}\)
#Permutation problem
cabinet <- factorial(14)/factorial(6)
cabinet
## [1] 121080960
|S| = \(\binom{22}{4}\), All possible combo in the sample space
|R| = \(\binom{9}{0}\), Red sample space and its combo
|O| = \(\binom{4}{1}\), Orange sample space and its combo
|G| = \(\binom{9}{3}\), Greens sample space and its combo
choose(9,0)*choose(4,1)*choose(9,3)/choose(22,4)
## [1] 0.04593301
factorial(11)/factorial(7)
## [1] 7920
ans:
Generic Binomial formula:
P(k heads and n-k tails) = \(\binom{n}{k}\) * \(p^{k}\)*\((1-p)^{k}\)
whereby p(heads) = 0.5 and p(tail) = 1- 0.5 = 0.5
P(Sucess = 3 heads) = \(\binom{4}{3}\) * \(0.5^{3}\)*\((1-0.5)^{1}\)
\(\ E\)(x) = 0.25$97 - 0.75$30
# Prob of success
ps <- 4*0.5^3*0.5^1
#Prob of failure
qf <- 1-ps
#Expected value of the proposition
E <- 0.25*97 - 0.75*30
E
## [1] 1.75
N\(\ E\)(x) = 559$1.75, where N is no. of times of playing the game
Exp1 <- 559*1.75
Exp1
## [1] 978.25
Following prob 11, P(Sucess = 4 heads or less) = \(\binom{n}{k}\) * \(p^{k}\)*\((1-p)^{k}\)
whereby k goes from 0 to 4 while n = 9
P(sucess) = 0.5 and P(failure) = 1-0.5 = 0.5
comb = function(n, x) {
factorial(n) / factorial(n-x) / factorial(x)
}
p <-0.5
q <- p
p0 <- comb(9, 0)*p^0*q^9
p1 <- comb(9, 1)*p^1*q^8
p2 <- comb(9, 2)*p^2*q^7
p3 <- comb(9, 3)*p^3*q^6
p4 <- comb(9, 4)*p^4*q^5
#prob of sucess (winning!)
ps <- p0+p1+p2+p3+p4
pfail <- 1-ps # prob of losing
#Expected value of the proposition
E2 <- ps*23-pfail*26
E2
## [1] -1.5
N∗E(X) = 994*(-$1.5)
E3 <- 994*E2
E3
## [1] -1491