Establecer semilla

set.seed(1234)

Identificar datos de la muestra

datos <- sample(70:100, 1000, replace = TRUE)
 datos
##    [1]  97  85  95  91  74  81  84  78  74  75  85  73  71  76  91  95  75  84
##   [19]  83  89  83  99  93  99  73  73  90  77  89  93  72  73 100 100  98  95
##   [37]  74  71  99  84  77  96  89  85  81  72  92  78  88  91  73  77  79  80
##   [55]  71  90  84  91  86  75  93  88  75  86  98  86  94  77  95  86 100  96
##   [73]  77  79  84  91  72  78  85  72  91  94  79  92  91  93  82  94  72  88
##   [91]  87  90  93  95  92  75  97  89  78 100  76  98  88  75 100  74  96  81
##  [109]  77  85  97  70  73  92  97  88  78  99  99 100  89  86  75  91  95  75
##  [127]  90  90  82  86  71  99  75  95  71  90  85  80  97  73  72  95  73  90
##  [145]  79  75  75  78  80  88  94  91  83  77  98  86  82  94  85  71  75  93
##  [163]  99  80  75  99  88  92  84  90  91  83  92  97  88  88  76  78  96  97
##  [181]  85  96  77  72  95  85  91  92  97  71  74  85  90  78  72  77  72  77
##  [199]  88  98  94  73  93  89  88  95  76  86  94  72  71  74  84  84  99  79
##  [217]  91  94  86  72  94  85  78  89  81  74  86  72  84  91  74  75  87  99
##  [235]  88  87  92  80  85 100  75  76  77  73  80  98  84  86  80  76  79  93
##  [253]  80  72  95  87  80  93  70  77  77  91  79  74  89  81 100  79  89  70
##  [271]  98  91  75  96  72  73  73  80  72  70  88  98  70  99  94  97  81  98
##  [289]  88  79  90  82  81  98 100  70  90  82  79  91  82  96  77  87  92 100
##  [307]  71  93  75  94  90  83  75  74  80  83  97  97  78  89  89  70  70  84
##  [325]  75  99  90  79  71  80  94  87  81  80  88  74  94  71  75  71  74  99
##  [343]  92  82  95  89  74  78  92  96  75  84  91  89  78  71  80  93  81  93
##  [361]  74  88 100  96  76  89  75  74  84 100  73  92  97  82  97  71  96  79
##  [379]  96  73  87  89  79  71  86  73  91  79  93  88  82  83  78  82  96  92
##  [397]  84  99  96  88  95  79  82  70  75  90  97  91  72  84  88  97  70  86
##  [415]  87  84  84  90  73  97  83  96  83  86  79  85  92  96  91  79  86  83
##  [433]  75  91  91  84  76  90  74  97  96  90  75  82  80  98  91  89  77  85
##  [451]  88  87  85  81  92  84  77  73  82  98  83  78  88  70  73  93  83 100
##  [469]  79  93  82  82  96  79  88  80  84  90  84  80  73  96  91  96  86 100
##  [487]  83  83 100  87  91  77  82  89 100 100  80  72  91 100  80  79  79  87
##  [505]  95  72  73 100  84  90  91  71  84  93  87  84  90  75  77  97  78  88
##  [523]  93  99  92  96  77  99 100  81  72  84  86 100  72  89  97  80  89  76
##  [541]  73  82  85 100  86  80  90  73  99  84  98  99  87  76  71  74  91  88
##  [559]  84  95  78  76  85  81  93  90  80  95  94  98  94  76  97  93  95 100
##  [577]  92  76  93  74  75  70  75  82  79  83  93  89  75  71  99  89  79  98
##  [595]  92  84  93  70  70  86  89  88 100  85  86  75 100  90  82  94  80  86
##  [613]  84  97  75  98  78  70 100  72  75  89 100  87  94  94  90  91  91  86
##  [631]  99  87  71  70  90  80  99  99  95  95  76  92  74  89  89  80  83  91
##  [649]  96  76  95  83  83  76  76  92  82  76  82  70  98  97  99  72  84  91
##  [667]  79  88  97 100  70  82  93  86  77  84  95  85  79  71  70  83  81  88
##  [685]  84  97  71  76  99 100  83  84  70  96  77  88  84  88  76  98  99  93
##  [703]  90  72  91 100  91 100  70  78  76  76  80  75  72  72  91  76  80  81
##  [721]  90  81  94  89  78  71  98  94 100  92  83  77  92  92  74  99  91  73
##  [739]  82  76  82  81  89 100  82  83  78  74  80  91  94 100  71  95  96  74
##  [757]  94  92  98  70  76  78  73  92  85  95  92  97  86  96  94 100  74  71
##  [775]  95  75  92  87  73  90  90  79  96  83  97  98  90  75  85  81  97  73
##  [793]  75  96  72  70  70  85  80  80  72  86  91  75  87  86  70  89  85  98
##  [811]  79  74 100  80  94  92  76  85  70  71  92  77 100  99  81  81  86  76
##  [829]  91  98  77  96  88  91  95  80  91  70  77  83  87  88  79  78  90  85
##  [847]  97  88  73  99  70  95  76  82  84  90  86  71  82  90  94  93  98  86
##  [865]  81  95  74  80  98  88 100  92  72  86  83  79  84  88  80  78  79 100
##  [883]  72  70  95  99  70 100  85  85  83  76  81  88  97  75  88  99  77  88
##  [901]  91  83  88  74  79  96  95  96  88  91  74  96  99  79  75  91  80  75
##  [919]  81  70  95  97  85  72  70  74  78  78  71  85  70  93  94  96  73  93
##  [937]  71  76  88  89  85  83  72  73  92  73  91  90  79  72  97  71  78  94
##  [955]  94  87  72  96  94  92  80  97  91  91  92  80  70  75  85  80  88  91
##  [973]  71 100  96  87  89  71  93  94 100  76  70  91  78  89  72  92  97  74
##  [991]  93  91  99  89  74  92  74  92  87  70

Ordenar datos y mostrar

datosord <- sort(datos)
datosord
##    [1]  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70
##   [19]  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70
##   [37]  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71
##   [55]  71  71  71  71  71  71  71  71  71  71  71  71  71  72  72  72  72  72
##   [73]  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72
##   [91]  72  72  72  72  72  72  72  72  72  72  72  73  73  73  73  73  73  73
##  [109]  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73
##  [127]  73  73  73  73  73  74  74  74  74  74  74  74  74  74  74  74  74  74
##  [145]  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74
##  [163]  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75
##  [181]  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75
##  [199]  75  75  75  75  75  76  76  76  76  76  76  76  76  76  76  76  76  76
##  [217]  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76
##  [235]  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77
##  [253]  77  77  77  77  77  77  77  77  78  78  78  78  78  78  78  78  78  78
##  [271]  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78  79
##  [289]  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79
##  [307]  79  79  79  79  79  79  79  79  79  79  79  79  79  79  80  80  80  80
##  [325]  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80
##  [343]  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  81  81
##  [361]  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81
##  [379]  81  81  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82
##  [397]  82  82  82  82  82  82  82  82  82  82  82  83  83  83  83  83  83  83
##  [415]  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83
##  [433]  83  83  83  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84
##  [451]  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84
##  [469]  84  84  84  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85
##  [487]  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  86  86
##  [505]  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86
##  [523]  86  86  86  86  86  86  86  86  86  86  87  87  87  87  87  87  87  87
##  [541]  87  87  87  87  87  87  87  87  87  87  87  87  87  88  88  88  88  88
##  [559]  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88
##  [577]  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88
##  [595]  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89
##  [613]  89  89  89  89  89  89  89  89  89  89  89  89  89  89  90  90  90  90
##  [631]  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90
##  [649]  90  90  90  90  90  90  90  90  90  90  90  90  91  91  91  91  91  91
##  [667]  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91
##  [685]  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91
##  [703]  91  91  91  91  91  91  91  91  92  92  92  92  92  92  92  92  92  92
##  [721]  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92
##  [739]  92  92  92  92  92  92  92  92  93  93  93  93  93  93  93  93  93  93
##  [757]  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93
##  [775]  93  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94
##  [793]  94  94  94  94  94  94  94  94  94  94  94  94  94  95  95  95  95  95
##  [811]  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95
##  [829]  95  95  95  95  95  95  95  96  96  96  96  96  96  96  96  96  96  96
##  [847]  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96
##  [865]  96  96  96  96  97  97  97  97  97  97  97  97  97  97  97  97  97  97
##  [883]  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97
##  [901]  97  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98
##  [919]  98  98  98  98  98  98  98  98  99  99  99  99  99  99  99  99  99  99
##  [937]  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99
##  [955]  99  99  99  99 100 100 100 100 100 100 100 100 100 100 100 100 100 100
##  [973] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
##  [991] 100 100 100 100 100 100 100 100 100 100

Encontrar número de elementos n, valores máximos y míximos , rango y amplitud del rango de la muestra

n <- length(datos)
n
## [1] 1000
max(datos)
## [1] 100
min(datos)
## [1] 70
rango <- range(datos)
rango
## [1]  70 100
amplitud <- diff(rango) # amplitud del rango. Tambien es max(muestra) - min(muestra)
amplitud
## [1] 30

FORMA HABITUAL PARA AGRUPAR DATOS

¿Cuántos intérvalos se quiere tener? ¿Cuántos grupos?

Determinar número de intervalos igual a 5

# Fórmula : valor mínimo / intervalos
nointervalos <- 5   # Número de intervalos que se desea
rangointervalos <- amplitud / nointervalos
rangointervalos
## [1] 6
# paste significa concatenar
print(paste("Los valores de cada grupos van ..."," de ", rangointervalos, " en  ", rangointervalos, " a partir de :", min(datos)))
## [1] "Los valores de cada grupos van ...  de  6  en   6  a partir de : 70"

Mostrar tabla de frecuencia de datos agrupados

Se empieza del valor menor para evitar errores de agrupamiento

tabla.intervalos <- transform(table(cut(datos, breaks = 5)))
tabla.intervalos
##       Var1 Freq
## 1  (70,76]  234
## 2  (76,82]  173
## 3  (82,88]  187
## 4  (88,94]  211
## 5 (94,100]  195

Plot o graficar tabla de frecuencia

plot(tabla.intervalos, main = "¿De cuál intervalo hay más y menos elementos?")

REGLA DE STURGES.

De manera mantematica sugiere los intérvalos y las amplitudes de cada intervalo

¿Cuáles intérvalos genera? ¿cual es la amplitud de cada intérvalo?

Fórmula: K=1+3.322(log N) /* Logaritmo de base 10 */

1 + 3.3222* (log10(n)) ## Redondeado hacia arriba entonces sale 11 igual que siguiente
## [1] 10.9666
nointervalos <- nclass.Sturges(datos) # igual al numero de intervalos aqui sale 11
nointervalos
## [1] 11
cut(datos, breaks = nointervalos) #Cortes de cada intérvalo
##    [1] (94.5,97.3] (83.6,86.4] (94.5,97.3] (89.1,91.8] (72.7,75.5] (80.9,83.6]
##    [7] (83.6,86.4] (75.5,78.2] (72.7,75.5] (72.7,75.5] (83.6,86.4] (72.7,75.5]
##   [13] (70,72.7]   (75.5,78.2] (89.1,91.8] (94.5,97.3] (72.7,75.5] (83.6,86.4]
##   [19] (80.9,83.6] (86.4,89.1] (80.9,83.6] (97.3,100]  (91.8,94.5] (97.3,100] 
##   [25] (72.7,75.5] (72.7,75.5] (89.1,91.8] (75.5,78.2] (86.4,89.1] (91.8,94.5]
##   [31] (70,72.7]   (72.7,75.5] (97.3,100]  (97.3,100]  (97.3,100]  (94.5,97.3]
##   [37] (72.7,75.5] (70,72.7]   (97.3,100]  (83.6,86.4] (75.5,78.2] (94.5,97.3]
##   [43] (86.4,89.1] (83.6,86.4] (80.9,83.6] (70,72.7]   (91.8,94.5] (75.5,78.2]
##   [49] (86.4,89.1] (89.1,91.8] (72.7,75.5] (75.5,78.2] (78.2,80.9] (78.2,80.9]
##   [55] (70,72.7]   (89.1,91.8] (83.6,86.4] (89.1,91.8] (83.6,86.4] (72.7,75.5]
##   [61] (91.8,94.5] (86.4,89.1] (72.7,75.5] (83.6,86.4] (97.3,100]  (83.6,86.4]
##   [67] (91.8,94.5] (75.5,78.2] (94.5,97.3] (83.6,86.4] (97.3,100]  (94.5,97.3]
##   [73] (75.5,78.2] (78.2,80.9] (83.6,86.4] (89.1,91.8] (70,72.7]   (75.5,78.2]
##   [79] (83.6,86.4] (70,72.7]   (89.1,91.8] (91.8,94.5] (78.2,80.9] (91.8,94.5]
##   [85] (89.1,91.8] (91.8,94.5] (80.9,83.6] (91.8,94.5] (70,72.7]   (86.4,89.1]
##   [91] (86.4,89.1] (89.1,91.8] (91.8,94.5] (94.5,97.3] (91.8,94.5] (72.7,75.5]
##   [97] (94.5,97.3] (86.4,89.1] (75.5,78.2] (97.3,100]  (75.5,78.2] (97.3,100] 
##  [103] (86.4,89.1] (72.7,75.5] (97.3,100]  (72.7,75.5] (94.5,97.3] (80.9,83.6]
##  [109] (75.5,78.2] (83.6,86.4] (94.5,97.3] (70,72.7]   (72.7,75.5] (91.8,94.5]
##  [115] (94.5,97.3] (86.4,89.1] (75.5,78.2] (97.3,100]  (97.3,100]  (97.3,100] 
##  [121] (86.4,89.1] (83.6,86.4] (72.7,75.5] (89.1,91.8] (94.5,97.3] (72.7,75.5]
##  [127] (89.1,91.8] (89.1,91.8] (80.9,83.6] (83.6,86.4] (70,72.7]   (97.3,100] 
##  [133] (72.7,75.5] (94.5,97.3] (70,72.7]   (89.1,91.8] (83.6,86.4] (78.2,80.9]
##  [139] (94.5,97.3] (72.7,75.5] (70,72.7]   (94.5,97.3] (72.7,75.5] (89.1,91.8]
##  [145] (78.2,80.9] (72.7,75.5] (72.7,75.5] (75.5,78.2] (78.2,80.9] (86.4,89.1]
##  [151] (91.8,94.5] (89.1,91.8] (80.9,83.6] (75.5,78.2] (97.3,100]  (83.6,86.4]
##  [157] (80.9,83.6] (91.8,94.5] (83.6,86.4] (70,72.7]   (72.7,75.5] (91.8,94.5]
##  [163] (97.3,100]  (78.2,80.9] (72.7,75.5] (97.3,100]  (86.4,89.1] (91.8,94.5]
##  [169] (83.6,86.4] (89.1,91.8] (89.1,91.8] (80.9,83.6] (91.8,94.5] (94.5,97.3]
##  [175] (86.4,89.1] (86.4,89.1] (75.5,78.2] (75.5,78.2] (94.5,97.3] (94.5,97.3]
##  [181] (83.6,86.4] (94.5,97.3] (75.5,78.2] (70,72.7]   (94.5,97.3] (83.6,86.4]
##  [187] (89.1,91.8] (91.8,94.5] (94.5,97.3] (70,72.7]   (72.7,75.5] (83.6,86.4]
##  [193] (89.1,91.8] (75.5,78.2] (70,72.7]   (75.5,78.2] (70,72.7]   (75.5,78.2]
##  [199] (86.4,89.1] (97.3,100]  (91.8,94.5] (72.7,75.5] (91.8,94.5] (86.4,89.1]
##  [205] (86.4,89.1] (94.5,97.3] (75.5,78.2] (83.6,86.4] (91.8,94.5] (70,72.7]  
##  [211] (70,72.7]   (72.7,75.5] (83.6,86.4] (83.6,86.4] (97.3,100]  (78.2,80.9]
##  [217] (89.1,91.8] (91.8,94.5] (83.6,86.4] (70,72.7]   (91.8,94.5] (83.6,86.4]
##  [223] (75.5,78.2] (86.4,89.1] (80.9,83.6] (72.7,75.5] (83.6,86.4] (70,72.7]  
##  [229] (83.6,86.4] (89.1,91.8] (72.7,75.5] (72.7,75.5] (86.4,89.1] (97.3,100] 
##  [235] (86.4,89.1] (86.4,89.1] (91.8,94.5] (78.2,80.9] (83.6,86.4] (97.3,100] 
##  [241] (72.7,75.5] (75.5,78.2] (75.5,78.2] (72.7,75.5] (78.2,80.9] (97.3,100] 
##  [247] (83.6,86.4] (83.6,86.4] (78.2,80.9] (75.5,78.2] (78.2,80.9] (91.8,94.5]
##  [253] (78.2,80.9] (70,72.7]   (94.5,97.3] (86.4,89.1] (78.2,80.9] (91.8,94.5]
##  [259] (70,72.7]   (75.5,78.2] (75.5,78.2] (89.1,91.8] (78.2,80.9] (72.7,75.5]
##  [265] (86.4,89.1] (80.9,83.6] (97.3,100]  (78.2,80.9] (86.4,89.1] (70,72.7]  
##  [271] (97.3,100]  (89.1,91.8] (72.7,75.5] (94.5,97.3] (70,72.7]   (72.7,75.5]
##  [277] (72.7,75.5] (78.2,80.9] (70,72.7]   (70,72.7]   (86.4,89.1] (97.3,100] 
##  [283] (70,72.7]   (97.3,100]  (91.8,94.5] (94.5,97.3] (80.9,83.6] (97.3,100] 
##  [289] (86.4,89.1] (78.2,80.9] (89.1,91.8] (80.9,83.6] (80.9,83.6] (97.3,100] 
##  [295] (97.3,100]  (70,72.7]   (89.1,91.8] (80.9,83.6] (78.2,80.9] (89.1,91.8]
##  [301] (80.9,83.6] (94.5,97.3] (75.5,78.2] (86.4,89.1] (91.8,94.5] (97.3,100] 
##  [307] (70,72.7]   (91.8,94.5] (72.7,75.5] (91.8,94.5] (89.1,91.8] (80.9,83.6]
##  [313] (72.7,75.5] (72.7,75.5] (78.2,80.9] (80.9,83.6] (94.5,97.3] (94.5,97.3]
##  [319] (75.5,78.2] (86.4,89.1] (86.4,89.1] (70,72.7]   (70,72.7]   (83.6,86.4]
##  [325] (72.7,75.5] (97.3,100]  (89.1,91.8] (78.2,80.9] (70,72.7]   (78.2,80.9]
##  [331] (91.8,94.5] (86.4,89.1] (80.9,83.6] (78.2,80.9] (86.4,89.1] (72.7,75.5]
##  [337] (91.8,94.5] (70,72.7]   (72.7,75.5] (70,72.7]   (72.7,75.5] (97.3,100] 
##  [343] (91.8,94.5] (80.9,83.6] (94.5,97.3] (86.4,89.1] (72.7,75.5] (75.5,78.2]
##  [349] (91.8,94.5] (94.5,97.3] (72.7,75.5] (83.6,86.4] (89.1,91.8] (86.4,89.1]
##  [355] (75.5,78.2] (70,72.7]   (78.2,80.9] (91.8,94.5] (80.9,83.6] (91.8,94.5]
##  [361] (72.7,75.5] (86.4,89.1] (97.3,100]  (94.5,97.3] (75.5,78.2] (86.4,89.1]
##  [367] (72.7,75.5] (72.7,75.5] (83.6,86.4] (97.3,100]  (72.7,75.5] (91.8,94.5]
##  [373] (94.5,97.3] (80.9,83.6] (94.5,97.3] (70,72.7]   (94.5,97.3] (78.2,80.9]
##  [379] (94.5,97.3] (72.7,75.5] (86.4,89.1] (86.4,89.1] (78.2,80.9] (70,72.7]  
##  [385] (83.6,86.4] (72.7,75.5] (89.1,91.8] (78.2,80.9] (91.8,94.5] (86.4,89.1]
##  [391] (80.9,83.6] (80.9,83.6] (75.5,78.2] (80.9,83.6] (94.5,97.3] (91.8,94.5]
##  [397] (83.6,86.4] (97.3,100]  (94.5,97.3] (86.4,89.1] (94.5,97.3] (78.2,80.9]
##  [403] (80.9,83.6] (70,72.7]   (72.7,75.5] (89.1,91.8] (94.5,97.3] (89.1,91.8]
##  [409] (70,72.7]   (83.6,86.4] (86.4,89.1] (94.5,97.3] (70,72.7]   (83.6,86.4]
##  [415] (86.4,89.1] (83.6,86.4] (83.6,86.4] (89.1,91.8] (72.7,75.5] (94.5,97.3]
##  [421] (80.9,83.6] (94.5,97.3] (80.9,83.6] (83.6,86.4] (78.2,80.9] (83.6,86.4]
##  [427] (91.8,94.5] (94.5,97.3] (89.1,91.8] (78.2,80.9] (83.6,86.4] (80.9,83.6]
##  [433] (72.7,75.5] (89.1,91.8] (89.1,91.8] (83.6,86.4] (75.5,78.2] (89.1,91.8]
##  [439] (72.7,75.5] (94.5,97.3] (94.5,97.3] (89.1,91.8] (72.7,75.5] (80.9,83.6]
##  [445] (78.2,80.9] (97.3,100]  (89.1,91.8] (86.4,89.1] (75.5,78.2] (83.6,86.4]
##  [451] (86.4,89.1] (86.4,89.1] (83.6,86.4] (80.9,83.6] (91.8,94.5] (83.6,86.4]
##  [457] (75.5,78.2] (72.7,75.5] (80.9,83.6] (97.3,100]  (80.9,83.6] (75.5,78.2]
##  [463] (86.4,89.1] (70,72.7]   (72.7,75.5] (91.8,94.5] (80.9,83.6] (97.3,100] 
##  [469] (78.2,80.9] (91.8,94.5] (80.9,83.6] (80.9,83.6] (94.5,97.3] (78.2,80.9]
##  [475] (86.4,89.1] (78.2,80.9] (83.6,86.4] (89.1,91.8] (83.6,86.4] (78.2,80.9]
##  [481] (72.7,75.5] (94.5,97.3] (89.1,91.8] (94.5,97.3] (83.6,86.4] (97.3,100] 
##  [487] (80.9,83.6] (80.9,83.6] (97.3,100]  (86.4,89.1] (89.1,91.8] (75.5,78.2]
##  [493] (80.9,83.6] (86.4,89.1] (97.3,100]  (97.3,100]  (78.2,80.9] (70,72.7]  
##  [499] (89.1,91.8] (97.3,100]  (78.2,80.9] (78.2,80.9] (78.2,80.9] (86.4,89.1]
##  [505] (94.5,97.3] (70,72.7]   (72.7,75.5] (97.3,100]  (83.6,86.4] (89.1,91.8]
##  [511] (89.1,91.8] (70,72.7]   (83.6,86.4] (91.8,94.5] (86.4,89.1] (83.6,86.4]
##  [517] (89.1,91.8] (72.7,75.5] (75.5,78.2] (94.5,97.3] (75.5,78.2] (86.4,89.1]
##  [523] (91.8,94.5] (97.3,100]  (91.8,94.5] (94.5,97.3] (75.5,78.2] (97.3,100] 
##  [529] (97.3,100]  (80.9,83.6] (70,72.7]   (83.6,86.4] (83.6,86.4] (97.3,100] 
##  [535] (70,72.7]   (86.4,89.1] (94.5,97.3] (78.2,80.9] (86.4,89.1] (75.5,78.2]
##  [541] (72.7,75.5] (80.9,83.6] (83.6,86.4] (97.3,100]  (83.6,86.4] (78.2,80.9]
##  [547] (89.1,91.8] (72.7,75.5] (97.3,100]  (83.6,86.4] (97.3,100]  (97.3,100] 
##  [553] (86.4,89.1] (75.5,78.2] (70,72.7]   (72.7,75.5] (89.1,91.8] (86.4,89.1]
##  [559] (83.6,86.4] (94.5,97.3] (75.5,78.2] (75.5,78.2] (83.6,86.4] (80.9,83.6]
##  [565] (91.8,94.5] (89.1,91.8] (78.2,80.9] (94.5,97.3] (91.8,94.5] (97.3,100] 
##  [571] (91.8,94.5] (75.5,78.2] (94.5,97.3] (91.8,94.5] (94.5,97.3] (97.3,100] 
##  [577] (91.8,94.5] (75.5,78.2] (91.8,94.5] (72.7,75.5] (72.7,75.5] (70,72.7]  
##  [583] (72.7,75.5] (80.9,83.6] (78.2,80.9] (80.9,83.6] (91.8,94.5] (86.4,89.1]
##  [589] (72.7,75.5] (70,72.7]   (97.3,100]  (86.4,89.1] (78.2,80.9] (97.3,100] 
##  [595] (91.8,94.5] (83.6,86.4] (91.8,94.5] (70,72.7]   (70,72.7]   (83.6,86.4]
##  [601] (86.4,89.1] (86.4,89.1] (97.3,100]  (83.6,86.4] (83.6,86.4] (72.7,75.5]
##  [607] (97.3,100]  (89.1,91.8] (80.9,83.6] (91.8,94.5] (78.2,80.9] (83.6,86.4]
##  [613] (83.6,86.4] (94.5,97.3] (72.7,75.5] (97.3,100]  (75.5,78.2] (70,72.7]  
##  [619] (97.3,100]  (70,72.7]   (72.7,75.5] (86.4,89.1] (97.3,100]  (86.4,89.1]
##  [625] (91.8,94.5] (91.8,94.5] (89.1,91.8] (89.1,91.8] (89.1,91.8] (83.6,86.4]
##  [631] (97.3,100]  (86.4,89.1] (70,72.7]   (70,72.7]   (89.1,91.8] (78.2,80.9]
##  [637] (97.3,100]  (97.3,100]  (94.5,97.3] (94.5,97.3] (75.5,78.2] (91.8,94.5]
##  [643] (72.7,75.5] (86.4,89.1] (86.4,89.1] (78.2,80.9] (80.9,83.6] (89.1,91.8]
##  [649] (94.5,97.3] (75.5,78.2] (94.5,97.3] (80.9,83.6] (80.9,83.6] (75.5,78.2]
##  [655] (75.5,78.2] (91.8,94.5] (80.9,83.6] (75.5,78.2] (80.9,83.6] (70,72.7]  
##  [661] (97.3,100]  (94.5,97.3] (97.3,100]  (70,72.7]   (83.6,86.4] (89.1,91.8]
##  [667] (78.2,80.9] (86.4,89.1] (94.5,97.3] (97.3,100]  (70,72.7]   (80.9,83.6]
##  [673] (91.8,94.5] (83.6,86.4] (75.5,78.2] (83.6,86.4] (94.5,97.3] (83.6,86.4]
##  [679] (78.2,80.9] (70,72.7]   (70,72.7]   (80.9,83.6] (80.9,83.6] (86.4,89.1]
##  [685] (83.6,86.4] (94.5,97.3] (70,72.7]   (75.5,78.2] (97.3,100]  (97.3,100] 
##  [691] (80.9,83.6] (83.6,86.4] (70,72.7]   (94.5,97.3] (75.5,78.2] (86.4,89.1]
##  [697] (83.6,86.4] (86.4,89.1] (75.5,78.2] (97.3,100]  (97.3,100]  (91.8,94.5]
##  [703] (89.1,91.8] (70,72.7]   (89.1,91.8] (97.3,100]  (89.1,91.8] (97.3,100] 
##  [709] (70,72.7]   (75.5,78.2] (75.5,78.2] (75.5,78.2] (78.2,80.9] (72.7,75.5]
##  [715] (70,72.7]   (70,72.7]   (89.1,91.8] (75.5,78.2] (78.2,80.9] (80.9,83.6]
##  [721] (89.1,91.8] (80.9,83.6] (91.8,94.5] (86.4,89.1] (75.5,78.2] (70,72.7]  
##  [727] (97.3,100]  (91.8,94.5] (97.3,100]  (91.8,94.5] (80.9,83.6] (75.5,78.2]
##  [733] (91.8,94.5] (91.8,94.5] (72.7,75.5] (97.3,100]  (89.1,91.8] (72.7,75.5]
##  [739] (80.9,83.6] (75.5,78.2] (80.9,83.6] (80.9,83.6] (86.4,89.1] (97.3,100] 
##  [745] (80.9,83.6] (80.9,83.6] (75.5,78.2] (72.7,75.5] (78.2,80.9] (89.1,91.8]
##  [751] (91.8,94.5] (97.3,100]  (70,72.7]   (94.5,97.3] (94.5,97.3] (72.7,75.5]
##  [757] (91.8,94.5] (91.8,94.5] (97.3,100]  (70,72.7]   (75.5,78.2] (75.5,78.2]
##  [763] (72.7,75.5] (91.8,94.5] (83.6,86.4] (94.5,97.3] (91.8,94.5] (94.5,97.3]
##  [769] (83.6,86.4] (94.5,97.3] (91.8,94.5] (97.3,100]  (72.7,75.5] (70,72.7]  
##  [775] (94.5,97.3] (72.7,75.5] (91.8,94.5] (86.4,89.1] (72.7,75.5] (89.1,91.8]
##  [781] (89.1,91.8] (78.2,80.9] (94.5,97.3] (80.9,83.6] (94.5,97.3] (97.3,100] 
##  [787] (89.1,91.8] (72.7,75.5] (83.6,86.4] (80.9,83.6] (94.5,97.3] (72.7,75.5]
##  [793] (72.7,75.5] (94.5,97.3] (70,72.7]   (70,72.7]   (70,72.7]   (83.6,86.4]
##  [799] (78.2,80.9] (78.2,80.9] (70,72.7]   (83.6,86.4] (89.1,91.8] (72.7,75.5]
##  [805] (86.4,89.1] (83.6,86.4] (70,72.7]   (86.4,89.1] (83.6,86.4] (97.3,100] 
##  [811] (78.2,80.9] (72.7,75.5] (97.3,100]  (78.2,80.9] (91.8,94.5] (91.8,94.5]
##  [817] (75.5,78.2] (83.6,86.4] (70,72.7]   (70,72.7]   (91.8,94.5] (75.5,78.2]
##  [823] (97.3,100]  (97.3,100]  (80.9,83.6] (80.9,83.6] (83.6,86.4] (75.5,78.2]
##  [829] (89.1,91.8] (97.3,100]  (75.5,78.2] (94.5,97.3] (86.4,89.1] (89.1,91.8]
##  [835] (94.5,97.3] (78.2,80.9] (89.1,91.8] (70,72.7]   (75.5,78.2] (80.9,83.6]
##  [841] (86.4,89.1] (86.4,89.1] (78.2,80.9] (75.5,78.2] (89.1,91.8] (83.6,86.4]
##  [847] (94.5,97.3] (86.4,89.1] (72.7,75.5] (97.3,100]  (70,72.7]   (94.5,97.3]
##  [853] (75.5,78.2] (80.9,83.6] (83.6,86.4] (89.1,91.8] (83.6,86.4] (70,72.7]  
##  [859] (80.9,83.6] (89.1,91.8] (91.8,94.5] (91.8,94.5] (97.3,100]  (83.6,86.4]
##  [865] (80.9,83.6] (94.5,97.3] (72.7,75.5] (78.2,80.9] (97.3,100]  (86.4,89.1]
##  [871] (97.3,100]  (91.8,94.5] (70,72.7]   (83.6,86.4] (80.9,83.6] (78.2,80.9]
##  [877] (83.6,86.4] (86.4,89.1] (78.2,80.9] (75.5,78.2] (78.2,80.9] (97.3,100] 
##  [883] (70,72.7]   (70,72.7]   (94.5,97.3] (97.3,100]  (70,72.7]   (97.3,100] 
##  [889] (83.6,86.4] (83.6,86.4] (80.9,83.6] (75.5,78.2] (80.9,83.6] (86.4,89.1]
##  [895] (94.5,97.3] (72.7,75.5] (86.4,89.1] (97.3,100]  (75.5,78.2] (86.4,89.1]
##  [901] (89.1,91.8] (80.9,83.6] (86.4,89.1] (72.7,75.5] (78.2,80.9] (94.5,97.3]
##  [907] (94.5,97.3] (94.5,97.3] (86.4,89.1] (89.1,91.8] (72.7,75.5] (94.5,97.3]
##  [913] (97.3,100]  (78.2,80.9] (72.7,75.5] (89.1,91.8] (78.2,80.9] (72.7,75.5]
##  [919] (80.9,83.6] (70,72.7]   (94.5,97.3] (94.5,97.3] (83.6,86.4] (70,72.7]  
##  [925] (70,72.7]   (72.7,75.5] (75.5,78.2] (75.5,78.2] (70,72.7]   (83.6,86.4]
##  [931] (70,72.7]   (91.8,94.5] (91.8,94.5] (94.5,97.3] (72.7,75.5] (91.8,94.5]
##  [937] (70,72.7]   (75.5,78.2] (86.4,89.1] (86.4,89.1] (83.6,86.4] (80.9,83.6]
##  [943] (70,72.7]   (72.7,75.5] (91.8,94.5] (72.7,75.5] (89.1,91.8] (89.1,91.8]
##  [949] (78.2,80.9] (70,72.7]   (94.5,97.3] (70,72.7]   (75.5,78.2] (91.8,94.5]
##  [955] (91.8,94.5] (86.4,89.1] (70,72.7]   (94.5,97.3] (91.8,94.5] (91.8,94.5]
##  [961] (78.2,80.9] (94.5,97.3] (89.1,91.8] (89.1,91.8] (91.8,94.5] (78.2,80.9]
##  [967] (70,72.7]   (72.7,75.5] (83.6,86.4] (78.2,80.9] (86.4,89.1] (89.1,91.8]
##  [973] (70,72.7]   (97.3,100]  (94.5,97.3] (86.4,89.1] (86.4,89.1] (70,72.7]  
##  [979] (91.8,94.5] (91.8,94.5] (97.3,100]  (75.5,78.2] (70,72.7]   (89.1,91.8]
##  [985] (75.5,78.2] (86.4,89.1] (70,72.7]   (91.8,94.5] (94.5,97.3] (72.7,75.5]
##  [991] (91.8,94.5] (89.1,91.8] (97.3,100]  (86.4,89.1] (72.7,75.5] (91.8,94.5]
##  [997] (72.7,75.5] (91.8,94.5] (86.4,89.1] (70,72.7]  
## 11 Levels: (70,72.7] (72.7,75.5] (75.5,78.2] (78.2,80.9] ... (97.3,100]
tabla.intervalos <- transform(table(cut(datos, breaks = nointervalos))) # son 11
tabla.intervalos
##           Var1 Freq
## 1    (70,72.7]  101
## 2  (72.7,75.5]  102
## 3  (75.5,78.2]   84
## 4  (78.2,80.9]   71
## 5  (80.9,83.6]   77
## 6  (83.6,86.4]   97
## 7  (86.4,89.1]   94
## 8  (89.1,91.8]   84
## 9  (91.8,94.5]   95
## 10 (94.5,97.3]   96
## 11  (97.3,100]   99
pie(tabla.intervalos$Freq, labels = paste(tabla.intervalos$Var1, " - ", tabla.intervalos$Freq), main = "¿De cuál intervalo hay más y menos elementos?")

En esta práctica lo que se está generando es un conjunto de datos de 1000 elementos entre 70 y 100, con los cuales se está haciendo en primer lugar obtener y mostrar los datos agrupados para posteriormente ordenarlos y mostrarlos de nuevo, después se encuentra el número de elementos n, valores mínimos y máximos, rango y amplitud del rango de los datos, después se utiliza una fórmula para agrupar los datos y se determina que el número de intervalos sea igual a 5, de ahí se identificar rango de cada intervalo mediante el valor mínimo y el número de intervalos. Después se muestra la tabla de los datos agrupados la cual empieza por el valor menor para evitar errores de agrupamiento, de esta misma tabla también se genera una gráfica. Por último se utiliza la regla de sturges para visualizar los intervalos que genera y que amplitud tiene cada uno, y una gráfica de pastel al final.