#Mostrar datos y generar datos
set.seed(1000)
muestra <- sample(70:100, size = 1000, replace=TRUE)
muestra
##    [1]  85  73  80  91  88  93  98  72  98  87  91  75  82  75  70  78  98  95
##   [19]  95  97  92  87  74  99  88  85  95  98  79  78  95  76  93  81  86  91
##   [37]  93  97  96  77  88  72  96  75  76  82  91  75  76  85  97  77  72  90
##   [55]  87  82  99  87  85  86  86  72  82  83  77 100  77  80  93  96  81  81
##   [73]  95  79  80  93  95  85  84  81  75  78  91  90  80  90 100  80  79  79
##   [91]  70  96  94  78  76  83 100  94  86  71  76  76  86  72  94  83  71  70
##  [109]  88  90  75  77  89 100  73  78  91  92  83  94  85  97  74  88  94  95
##  [127] 100  88 100 100  98  90  72  86  93  78  91  97  78  99  74  85  73  78
##  [145]  75  97  81  94  80  88  79  77 100  84  79  93  88  98  88  87  77  86
##  [163] 100  85  72  82  72  94  75  99  74  92  72  96  84  84  94  75  78  71
##  [181]  89  87  98  77  98  70  80  93  86  74  74  97  99  85 100  84  99  78
##  [199]  89  93  92  84  92  95  96  92  92  71  85  87  87  89  74  70  92  85
##  [217]  75  94  97  86  93  77  93  88  93 100  76  91  96  77 100  89  94  98
##  [235]  82  93  72  73  76  89  92  88  87  88  87  97  86  74  75  76  90  75
##  [253]  97  89  78  89  73  89  72  79  74  80  72  92  70  82  70  82  91  97
##  [271]  74  90  78  89  71  77 100  70  70  71  70  70  85  72  90  76  81  95
##  [289]  84  93  78  77  95  88  76  71  95  88  96  84  90  77  88  84  91  77
##  [307]  91  90  97  83  75  95  93  81  84  70  83  72  73  70  70  74 100  85
##  [325]  94  98  94  91  73 100  73  84  87  87  85  77  89  99  84  95  95 100
##  [343]  74  72  84  74  87  96  75  83  76  92  80  82  89  91  78  72  75  89
##  [361]  86  83  82  88  91  90  89  82  97  75  84  81  83  98  74  74  78  78
##  [379]  89  84  70  96  80  99  77  92  96  96  86  72  72  71  91  99  94  92
##  [397]  76  93  81  74 100  95  93  94  79  98  98  98  99  94  86  81  99  89
##  [415]  78  84  71  98  76  72  87  83  94  87  96  82  84  83  76  74  75  98
##  [433]  77  84  84  91  94  81  98  85  73  85 100  75  96  80  73  74  90  93
##  [451]  81  96 100 100  98  84  90  87  98  79  98  87  81  72  74  92  75  88
##  [469]  91  92  76  83  74  97  70  96  81  99  81  81  91  71  75  96  88  96
##  [487]  80  83  86  98  92  96  82  79  86  97  95  73  87  71  82  91  78 100
##  [505]  84  85  98  88  71  70  96  88  83  85  81  77  75  79  90  96  73  80
##  [523]  72  96  78  92  88  93  85  86  91  96  88  82  95  84  86  95  96  97
##  [541]  82  72  78  87  74  73  75  91  96  93 100  74  80  95  70 100  90  85
##  [559]  91  90  94  83  83  77  77  72  83  75  76  96  81  83  91  72  98  92
##  [577]  78  73  83  97  70  87  73  89  80  72  96  80  75  89  96  88  89  81
##  [595]  82  82  92 100  98  84  95  91 100  90  86  70  98  73 100  95  73  82
##  [613]  91  72  70  86  83  87  95  80  95  91  93  79  74  78  94  87  71  73
##  [631]  95  92  84  71  78  86  96  92  90  76  77  92  74  85  99 100  85  88
##  [649]  83  75  76  79  90  87  97  95  99  89  82  91  70  87  90  96  95  97
##  [667]  91  87  71  74  82  99  72  88  84  74  99  92  99  96  98  83  89  79
##  [685]  79  86  83  90  83  70  81  82  95  88  93  81  78  84  99  74  83  72
##  [703]  87  93  96  94  94  91  98  85  88  73  71  86  89  71  91  78  70  70
##  [721]  83  98  99  92  70  91  77  99  75  78  73  99  90  91  71  92  77  78
##  [739]  99  77  74  90  78  76  95  72  89  90  73  83  70  99  90  83  94  89
##  [757]  79  82  82  95  95  97  74  86  95  85  79  74  82  96  73  76  79  85
##  [775]  82  99  78  73  90  92  82  97  83  86  82  85  72 100  83  84  88  72
##  [793]  91  86  76  93  98  85  98  97  75  78 100  81  75  93  79  93  81  94
##  [811]  99  76  74  96  82  98  86  88  98  75  85  87  82  84  87  89  73  86
##  [829]  85  75  75  95  71  99  95  98  92  88  71  82  96  96  90  91  78  77
##  [847]  84  97 100  91  85  95  96  71  75  80  86  85  94  75  93  97 100  91
##  [865]  84  99  79  92  82  90 100  74  87  98  85  92  74  96  97  99  89 100
##  [883]  95  71  93  89  99  83  78  88  71  88  72  96  86  84  71  76  86  94
##  [901]  91  96  94  75  71  95  74  98  93  71  95  73  92  84  81  75  98  89
##  [919]  82  87  77  85  72  94  83  70  96  72  94  84  72 100  92  95  95  73
##  [937]  77  72  79  90  72  80  85  92  90  92  93  92  97  92  83  87  95  97
##  [955]  79  82  99  70  80  86  86  87  88  82  90  96  85  89  70  82  99  78
##  [973]  85 100  96  86  81  91  74  84  70 100  95  75  86  72  95  99  97  85
##  [991]  70  85  97  81  80  76  99  84  99  85
#Ordenar datos y mostrar 
muestraord <- sort(muestra)
muestraord
##    [1]  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70
##   [19]  70  70  70  70  70  70  70  70  70  70  70  70  70  70  71  71  71  71
##   [37]  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71
##   [55]  71  71  71  71  72  72  72  72  72  72  72  72  72  72  72  72  72  72
##   [73]  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72
##   [91]  72  72  72  72  72  72  73  73  73  73  73  73  73  73  73  73  73  73
##  [109]  73  73  73  73  73  73  73  73  73  73  73  73  73  73  74  74  74  74
##  [127]  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74
##  [145]  74  74  74  74  74  74  74  74  74  74  74  74  74  75  75  75  75  75
##  [163]  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75
##  [181]  75  75  75  75  75  75  75  75  75  75  75  75  75  76  76  76  76  76
##  [199]  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76
##  [217]  76  76  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77
##  [235]  77  77  77  77  77  77  77  77  77  77  77  78  78  78  78  78  78  78
##  [253]  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78
##  [271]  78  78  78  78  78  78  78  78  79  79  79  79  79  79  79  79  79  79
##  [289]  79  79  79  79  79  79  79  79  79  79  79  79  80  80  80  80  80  80
##  [307]  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  81  81  81
##  [325]  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81
##  [343]  81  81  81  81  81  82  82  82  82  82  82  82  82  82  82  82  82  82
##  [361]  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82
##  [379]  82  82  82  82  82  83  83  83  83  83  83  83  83  83  83  83  83  83
##  [397]  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83
##  [415]  83  83  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84
##  [433]  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84
##  [451]  84  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85
##  [469]  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85
##  [487]  85  85  85  85  86  86  86  86  86  86  86  86  86  86  86  86  86  86
##  [505]  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86
##  [523]  86  86  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87
##  [541]  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87  88  88
##  [559]  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88  88
##  [577]  88  88  88  88  88  88  88  88  88  88  88  88  88  89  89  89  89  89
##  [595]  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89
##  [613]  89  89  89  89  89  89  90  90  90  90  90  90  90  90  90  90  90  90
##  [631]  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90
##  [649]  90  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91
##  [667]  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91
##  [685]  91  91  91  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92
##  [703]  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92
##  [721]  92  92  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93
##  [739]  93  93  93  93  93  93  93  93  93  93  93  93  93  93  94  94  94  94
##  [757]  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94
##  [775]  94  94  94  94  94  94  95  95  95  95  95  95  95  95  95  95  95  95
##  [793]  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95
##  [811]  95  95  95  95  95  95  95  95  95  95  95  95  96  96  96  96  96  96
##  [829]  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96
##  [847]  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96
##  [865]  96  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97
##  [883]  97  97  97  97  97  97  97  97  97  97  97  97  98  98  98  98  98  98
##  [901]  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98
##  [919]  98  98  98  98  98  98  98  98  98  98  98  98  99  99  99  99  99  99
##  [937]  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99
##  [955]  99  99  99  99  99  99  99  99  99  99 100 100 100 100 100 100 100 100
##  [973] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
##  [991] 100 100 100 100 100 100 100 100 100 100
#Encontrar numero de elementos n, valores maximos y minimos, rango y amplitud del rango de la muestra
n <- length(muestra)
n
## [1] 1000
max(muestra)
## [1] 100
min(muestra)
## [1] 70
#RANGO
rango <- range(muestra) # Valores minimo a maximo
rango
## [1]  70 100
#AMPLITUD DEL RANGO 
amplitud <- diff(rango) 
amplitud
## [1] 30
#FORMA ABITUAL PARA AGRUPAR DATOS
#DETERMINAR INTERVALO DE 5
nointervalos <- 5 #numero de intervalos 
rangointervalos <- amplitud / nointervalos
rangointervalos
## [1] 6
#PASTE SIGNIFICA CONCATENAR 
print(paste("Los valores de cada grupo van ...","de", rangointervalos, "en", rangointervalos, "a partir de:", min (muestra)))
## [1] "Los valores de cada grupo van ... de 6 en 6 a partir de: 70"
#Mostrar tabla de frecuencia de datos agrupados 
#Se empieza del valor menor para evitar errores de agrupamiento
tabla.intervalos <- transform(table(cut(muestra, breaks = 5)))
tabla.intervalos
##       Var1 Freq
## 1  (70,76]  218
## 2  (76,82]  165
## 3  (82,88]  206
## 4  (88,94]  191
## 5 (94,100]  220
#Plot o graficar tabla de frecuencia 
plot (tabla.intervalos, main = "¿De cual intervalo hay mas y menos elementos?")

#REGLA DE STURGES.
1 + 3.3222* (log10(n)) ##Redondeando hacia arriba entonces sale 6 igual que siguiente 
## [1] 10.9666
nointervalos <- nclass.Sturges(muestra)
nointervalos
## [1] 11
cut(muestra, breaks = nointervalos) #Cortes de cada intervalo 
##    [1] (83.6,86.4] (72.7,75.5] (78.2,80.9] (89.1,91.8] (86.4,89.1] (91.8,94.5]
##    [7] (97.3,100]  (70,72.7]   (97.3,100]  (86.4,89.1] (89.1,91.8] (72.7,75.5]
##   [13] (80.9,83.6] (72.7,75.5] (70,72.7]   (75.5,78.2] (97.3,100]  (94.5,97.3]
##   [19] (94.5,97.3] (94.5,97.3] (91.8,94.5] (86.4,89.1] (72.7,75.5] (97.3,100] 
##   [25] (86.4,89.1] (83.6,86.4] (94.5,97.3] (97.3,100]  (78.2,80.9] (75.5,78.2]
##   [31] (94.5,97.3] (75.5,78.2] (91.8,94.5] (80.9,83.6] (83.6,86.4] (89.1,91.8]
##   [37] (91.8,94.5] (94.5,97.3] (94.5,97.3] (75.5,78.2] (86.4,89.1] (70,72.7]  
##   [43] (94.5,97.3] (72.7,75.5] (75.5,78.2] (80.9,83.6] (89.1,91.8] (72.7,75.5]
##   [49] (75.5,78.2] (83.6,86.4] (94.5,97.3] (75.5,78.2] (70,72.7]   (89.1,91.8]
##   [55] (86.4,89.1] (80.9,83.6] (97.3,100]  (86.4,89.1] (83.6,86.4] (83.6,86.4]
##   [61] (83.6,86.4] (70,72.7]   (80.9,83.6] (80.9,83.6] (75.5,78.2] (97.3,100] 
##   [67] (75.5,78.2] (78.2,80.9] (91.8,94.5] (94.5,97.3] (80.9,83.6] (80.9,83.6]
##   [73] (94.5,97.3] (78.2,80.9] (78.2,80.9] (91.8,94.5] (94.5,97.3] (83.6,86.4]
##   [79] (83.6,86.4] (80.9,83.6] (72.7,75.5] (75.5,78.2] (89.1,91.8] (89.1,91.8]
##   [85] (78.2,80.9] (89.1,91.8] (97.3,100]  (78.2,80.9] (78.2,80.9] (78.2,80.9]
##   [91] (70,72.7]   (94.5,97.3] (91.8,94.5] (75.5,78.2] (75.5,78.2] (80.9,83.6]
##   [97] (97.3,100]  (91.8,94.5] (83.6,86.4] (70,72.7]   (75.5,78.2] (75.5,78.2]
##  [103] (83.6,86.4] (70,72.7]   (91.8,94.5] (80.9,83.6] (70,72.7]   (70,72.7]  
##  [109] (86.4,89.1] (89.1,91.8] (72.7,75.5] (75.5,78.2] (86.4,89.1] (97.3,100] 
##  [115] (72.7,75.5] (75.5,78.2] (89.1,91.8] (91.8,94.5] (80.9,83.6] (91.8,94.5]
##  [121] (83.6,86.4] (94.5,97.3] (72.7,75.5] (86.4,89.1] (91.8,94.5] (94.5,97.3]
##  [127] (97.3,100]  (86.4,89.1] (97.3,100]  (97.3,100]  (97.3,100]  (89.1,91.8]
##  [133] (70,72.7]   (83.6,86.4] (91.8,94.5] (75.5,78.2] (89.1,91.8] (94.5,97.3]
##  [139] (75.5,78.2] (97.3,100]  (72.7,75.5] (83.6,86.4] (72.7,75.5] (75.5,78.2]
##  [145] (72.7,75.5] (94.5,97.3] (80.9,83.6] (91.8,94.5] (78.2,80.9] (86.4,89.1]
##  [151] (78.2,80.9] (75.5,78.2] (97.3,100]  (83.6,86.4] (78.2,80.9] (91.8,94.5]
##  [157] (86.4,89.1] (97.3,100]  (86.4,89.1] (86.4,89.1] (75.5,78.2] (83.6,86.4]
##  [163] (97.3,100]  (83.6,86.4] (70,72.7]   (80.9,83.6] (70,72.7]   (91.8,94.5]
##  [169] (72.7,75.5] (97.3,100]  (72.7,75.5] (91.8,94.5] (70,72.7]   (94.5,97.3]
##  [175] (83.6,86.4] (83.6,86.4] (91.8,94.5] (72.7,75.5] (75.5,78.2] (70,72.7]  
##  [181] (86.4,89.1] (86.4,89.1] (97.3,100]  (75.5,78.2] (97.3,100]  (70,72.7]  
##  [187] (78.2,80.9] (91.8,94.5] (83.6,86.4] (72.7,75.5] (72.7,75.5] (94.5,97.3]
##  [193] (97.3,100]  (83.6,86.4] (97.3,100]  (83.6,86.4] (97.3,100]  (75.5,78.2]
##  [199] (86.4,89.1] (91.8,94.5] (91.8,94.5] (83.6,86.4] (91.8,94.5] (94.5,97.3]
##  [205] (94.5,97.3] (91.8,94.5] (91.8,94.5] (70,72.7]   (83.6,86.4] (86.4,89.1]
##  [211] (86.4,89.1] (86.4,89.1] (72.7,75.5] (70,72.7]   (91.8,94.5] (83.6,86.4]
##  [217] (72.7,75.5] (91.8,94.5] (94.5,97.3] (83.6,86.4] (91.8,94.5] (75.5,78.2]
##  [223] (91.8,94.5] (86.4,89.1] (91.8,94.5] (97.3,100]  (75.5,78.2] (89.1,91.8]
##  [229] (94.5,97.3] (75.5,78.2] (97.3,100]  (86.4,89.1] (91.8,94.5] (97.3,100] 
##  [235] (80.9,83.6] (91.8,94.5] (70,72.7]   (72.7,75.5] (75.5,78.2] (86.4,89.1]
##  [241] (91.8,94.5] (86.4,89.1] (86.4,89.1] (86.4,89.1] (86.4,89.1] (94.5,97.3]
##  [247] (83.6,86.4] (72.7,75.5] (72.7,75.5] (75.5,78.2] (89.1,91.8] (72.7,75.5]
##  [253] (94.5,97.3] (86.4,89.1] (75.5,78.2] (86.4,89.1] (72.7,75.5] (86.4,89.1]
##  [259] (70,72.7]   (78.2,80.9] (72.7,75.5] (78.2,80.9] (70,72.7]   (91.8,94.5]
##  [265] (70,72.7]   (80.9,83.6] (70,72.7]   (80.9,83.6] (89.1,91.8] (94.5,97.3]
##  [271] (72.7,75.5] (89.1,91.8] (75.5,78.2] (86.4,89.1] (70,72.7]   (75.5,78.2]
##  [277] (97.3,100]  (70,72.7]   (70,72.7]   (70,72.7]   (70,72.7]   (70,72.7]  
##  [283] (83.6,86.4] (70,72.7]   (89.1,91.8] (75.5,78.2] (80.9,83.6] (94.5,97.3]
##  [289] (83.6,86.4] (91.8,94.5] (75.5,78.2] (75.5,78.2] (94.5,97.3] (86.4,89.1]
##  [295] (75.5,78.2] (70,72.7]   (94.5,97.3] (86.4,89.1] (94.5,97.3] (83.6,86.4]
##  [301] (89.1,91.8] (75.5,78.2] (86.4,89.1] (83.6,86.4] (89.1,91.8] (75.5,78.2]
##  [307] (89.1,91.8] (89.1,91.8] (94.5,97.3] (80.9,83.6] (72.7,75.5] (94.5,97.3]
##  [313] (91.8,94.5] (80.9,83.6] (83.6,86.4] (70,72.7]   (80.9,83.6] (70,72.7]  
##  [319] (72.7,75.5] (70,72.7]   (70,72.7]   (72.7,75.5] (97.3,100]  (83.6,86.4]
##  [325] (91.8,94.5] (97.3,100]  (91.8,94.5] (89.1,91.8] (72.7,75.5] (97.3,100] 
##  [331] (72.7,75.5] (83.6,86.4] (86.4,89.1] (86.4,89.1] (83.6,86.4] (75.5,78.2]
##  [337] (86.4,89.1] (97.3,100]  (83.6,86.4] (94.5,97.3] (94.5,97.3] (97.3,100] 
##  [343] (72.7,75.5] (70,72.7]   (83.6,86.4] (72.7,75.5] (86.4,89.1] (94.5,97.3]
##  [349] (72.7,75.5] (80.9,83.6] (75.5,78.2] (91.8,94.5] (78.2,80.9] (80.9,83.6]
##  [355] (86.4,89.1] (89.1,91.8] (75.5,78.2] (70,72.7]   (72.7,75.5] (86.4,89.1]
##  [361] (83.6,86.4] (80.9,83.6] (80.9,83.6] (86.4,89.1] (89.1,91.8] (89.1,91.8]
##  [367] (86.4,89.1] (80.9,83.6] (94.5,97.3] (72.7,75.5] (83.6,86.4] (80.9,83.6]
##  [373] (80.9,83.6] (97.3,100]  (72.7,75.5] (72.7,75.5] (75.5,78.2] (75.5,78.2]
##  [379] (86.4,89.1] (83.6,86.4] (70,72.7]   (94.5,97.3] (78.2,80.9] (97.3,100] 
##  [385] (75.5,78.2] (91.8,94.5] (94.5,97.3] (94.5,97.3] (83.6,86.4] (70,72.7]  
##  [391] (70,72.7]   (70,72.7]   (89.1,91.8] (97.3,100]  (91.8,94.5] (91.8,94.5]
##  [397] (75.5,78.2] (91.8,94.5] (80.9,83.6] (72.7,75.5] (97.3,100]  (94.5,97.3]
##  [403] (91.8,94.5] (91.8,94.5] (78.2,80.9] (97.3,100]  (97.3,100]  (97.3,100] 
##  [409] (97.3,100]  (91.8,94.5] (83.6,86.4] (80.9,83.6] (97.3,100]  (86.4,89.1]
##  [415] (75.5,78.2] (83.6,86.4] (70,72.7]   (97.3,100]  (75.5,78.2] (70,72.7]  
##  [421] (86.4,89.1] (80.9,83.6] (91.8,94.5] (86.4,89.1] (94.5,97.3] (80.9,83.6]
##  [427] (83.6,86.4] (80.9,83.6] (75.5,78.2] (72.7,75.5] (72.7,75.5] (97.3,100] 
##  [433] (75.5,78.2] (83.6,86.4] (83.6,86.4] (89.1,91.8] (91.8,94.5] (80.9,83.6]
##  [439] (97.3,100]  (83.6,86.4] (72.7,75.5] (83.6,86.4] (97.3,100]  (72.7,75.5]
##  [445] (94.5,97.3] (78.2,80.9] (72.7,75.5] (72.7,75.5] (89.1,91.8] (91.8,94.5]
##  [451] (80.9,83.6] (94.5,97.3] (97.3,100]  (97.3,100]  (97.3,100]  (83.6,86.4]
##  [457] (89.1,91.8] (86.4,89.1] (97.3,100]  (78.2,80.9] (97.3,100]  (86.4,89.1]
##  [463] (80.9,83.6] (70,72.7]   (72.7,75.5] (91.8,94.5] (72.7,75.5] (86.4,89.1]
##  [469] (89.1,91.8] (91.8,94.5] (75.5,78.2] (80.9,83.6] (72.7,75.5] (94.5,97.3]
##  [475] (70,72.7]   (94.5,97.3] (80.9,83.6] (97.3,100]  (80.9,83.6] (80.9,83.6]
##  [481] (89.1,91.8] (70,72.7]   (72.7,75.5] (94.5,97.3] (86.4,89.1] (94.5,97.3]
##  [487] (78.2,80.9] (80.9,83.6] (83.6,86.4] (97.3,100]  (91.8,94.5] (94.5,97.3]
##  [493] (80.9,83.6] (78.2,80.9] (83.6,86.4] (94.5,97.3] (94.5,97.3] (72.7,75.5]
##  [499] (86.4,89.1] (70,72.7]   (80.9,83.6] (89.1,91.8] (75.5,78.2] (97.3,100] 
##  [505] (83.6,86.4] (83.6,86.4] (97.3,100]  (86.4,89.1] (70,72.7]   (70,72.7]  
##  [511] (94.5,97.3] (86.4,89.1] (80.9,83.6] (83.6,86.4] (80.9,83.6] (75.5,78.2]
##  [517] (72.7,75.5] (78.2,80.9] (89.1,91.8] (94.5,97.3] (72.7,75.5] (78.2,80.9]
##  [523] (70,72.7]   (94.5,97.3] (75.5,78.2] (91.8,94.5] (86.4,89.1] (91.8,94.5]
##  [529] (83.6,86.4] (83.6,86.4] (89.1,91.8] (94.5,97.3] (86.4,89.1] (80.9,83.6]
##  [535] (94.5,97.3] (83.6,86.4] (83.6,86.4] (94.5,97.3] (94.5,97.3] (94.5,97.3]
##  [541] (80.9,83.6] (70,72.7]   (75.5,78.2] (86.4,89.1] (72.7,75.5] (72.7,75.5]
##  [547] (72.7,75.5] (89.1,91.8] (94.5,97.3] (91.8,94.5] (97.3,100]  (72.7,75.5]
##  [553] (78.2,80.9] (94.5,97.3] (70,72.7]   (97.3,100]  (89.1,91.8] (83.6,86.4]
##  [559] (89.1,91.8] (89.1,91.8] (91.8,94.5] (80.9,83.6] (80.9,83.6] (75.5,78.2]
##  [565] (75.5,78.2] (70,72.7]   (80.9,83.6] (72.7,75.5] (75.5,78.2] (94.5,97.3]
##  [571] (80.9,83.6] (80.9,83.6] (89.1,91.8] (70,72.7]   (97.3,100]  (91.8,94.5]
##  [577] (75.5,78.2] (72.7,75.5] (80.9,83.6] (94.5,97.3] (70,72.7]   (86.4,89.1]
##  [583] (72.7,75.5] (86.4,89.1] (78.2,80.9] (70,72.7]   (94.5,97.3] (78.2,80.9]
##  [589] (72.7,75.5] (86.4,89.1] (94.5,97.3] (86.4,89.1] (86.4,89.1] (80.9,83.6]
##  [595] (80.9,83.6] (80.9,83.6] (91.8,94.5] (97.3,100]  (97.3,100]  (83.6,86.4]
##  [601] (94.5,97.3] (89.1,91.8] (97.3,100]  (89.1,91.8] (83.6,86.4] (70,72.7]  
##  [607] (97.3,100]  (72.7,75.5] (97.3,100]  (94.5,97.3] (72.7,75.5] (80.9,83.6]
##  [613] (89.1,91.8] (70,72.7]   (70,72.7]   (83.6,86.4] (80.9,83.6] (86.4,89.1]
##  [619] (94.5,97.3] (78.2,80.9] (94.5,97.3] (89.1,91.8] (91.8,94.5] (78.2,80.9]
##  [625] (72.7,75.5] (75.5,78.2] (91.8,94.5] (86.4,89.1] (70,72.7]   (72.7,75.5]
##  [631] (94.5,97.3] (91.8,94.5] (83.6,86.4] (70,72.7]   (75.5,78.2] (83.6,86.4]
##  [637] (94.5,97.3] (91.8,94.5] (89.1,91.8] (75.5,78.2] (75.5,78.2] (91.8,94.5]
##  [643] (72.7,75.5] (83.6,86.4] (97.3,100]  (97.3,100]  (83.6,86.4] (86.4,89.1]
##  [649] (80.9,83.6] (72.7,75.5] (75.5,78.2] (78.2,80.9] (89.1,91.8] (86.4,89.1]
##  [655] (94.5,97.3] (94.5,97.3] (97.3,100]  (86.4,89.1] (80.9,83.6] (89.1,91.8]
##  [661] (70,72.7]   (86.4,89.1] (89.1,91.8] (94.5,97.3] (94.5,97.3] (94.5,97.3]
##  [667] (89.1,91.8] (86.4,89.1] (70,72.7]   (72.7,75.5] (80.9,83.6] (97.3,100] 
##  [673] (70,72.7]   (86.4,89.1] (83.6,86.4] (72.7,75.5] (97.3,100]  (91.8,94.5]
##  [679] (97.3,100]  (94.5,97.3] (97.3,100]  (80.9,83.6] (86.4,89.1] (78.2,80.9]
##  [685] (78.2,80.9] (83.6,86.4] (80.9,83.6] (89.1,91.8] (80.9,83.6] (70,72.7]  
##  [691] (80.9,83.6] (80.9,83.6] (94.5,97.3] (86.4,89.1] (91.8,94.5] (80.9,83.6]
##  [697] (75.5,78.2] (83.6,86.4] (97.3,100]  (72.7,75.5] (80.9,83.6] (70,72.7]  
##  [703] (86.4,89.1] (91.8,94.5] (94.5,97.3] (91.8,94.5] (91.8,94.5] (89.1,91.8]
##  [709] (97.3,100]  (83.6,86.4] (86.4,89.1] (72.7,75.5] (70,72.7]   (83.6,86.4]
##  [715] (86.4,89.1] (70,72.7]   (89.1,91.8] (75.5,78.2] (70,72.7]   (70,72.7]  
##  [721] (80.9,83.6] (97.3,100]  (97.3,100]  (91.8,94.5] (70,72.7]   (89.1,91.8]
##  [727] (75.5,78.2] (97.3,100]  (72.7,75.5] (75.5,78.2] (72.7,75.5] (97.3,100] 
##  [733] (89.1,91.8] (89.1,91.8] (70,72.7]   (91.8,94.5] (75.5,78.2] (75.5,78.2]
##  [739] (97.3,100]  (75.5,78.2] (72.7,75.5] (89.1,91.8] (75.5,78.2] (75.5,78.2]
##  [745] (94.5,97.3] (70,72.7]   (86.4,89.1] (89.1,91.8] (72.7,75.5] (80.9,83.6]
##  [751] (70,72.7]   (97.3,100]  (89.1,91.8] (80.9,83.6] (91.8,94.5] (86.4,89.1]
##  [757] (78.2,80.9] (80.9,83.6] (80.9,83.6] (94.5,97.3] (94.5,97.3] (94.5,97.3]
##  [763] (72.7,75.5] (83.6,86.4] (94.5,97.3] (83.6,86.4] (78.2,80.9] (72.7,75.5]
##  [769] (80.9,83.6] (94.5,97.3] (72.7,75.5] (75.5,78.2] (78.2,80.9] (83.6,86.4]
##  [775] (80.9,83.6] (97.3,100]  (75.5,78.2] (72.7,75.5] (89.1,91.8] (91.8,94.5]
##  [781] (80.9,83.6] (94.5,97.3] (80.9,83.6] (83.6,86.4] (80.9,83.6] (83.6,86.4]
##  [787] (70,72.7]   (97.3,100]  (80.9,83.6] (83.6,86.4] (86.4,89.1] (70,72.7]  
##  [793] (89.1,91.8] (83.6,86.4] (75.5,78.2] (91.8,94.5] (97.3,100]  (83.6,86.4]
##  [799] (97.3,100]  (94.5,97.3] (72.7,75.5] (75.5,78.2] (97.3,100]  (80.9,83.6]
##  [805] (72.7,75.5] (91.8,94.5] (78.2,80.9] (91.8,94.5] (80.9,83.6] (91.8,94.5]
##  [811] (97.3,100]  (75.5,78.2] (72.7,75.5] (94.5,97.3] (80.9,83.6] (97.3,100] 
##  [817] (83.6,86.4] (86.4,89.1] (97.3,100]  (72.7,75.5] (83.6,86.4] (86.4,89.1]
##  [823] (80.9,83.6] (83.6,86.4] (86.4,89.1] (86.4,89.1] (72.7,75.5] (83.6,86.4]
##  [829] (83.6,86.4] (72.7,75.5] (72.7,75.5] (94.5,97.3] (70,72.7]   (97.3,100] 
##  [835] (94.5,97.3] (97.3,100]  (91.8,94.5] (86.4,89.1] (70,72.7]   (80.9,83.6]
##  [841] (94.5,97.3] (94.5,97.3] (89.1,91.8] (89.1,91.8] (75.5,78.2] (75.5,78.2]
##  [847] (83.6,86.4] (94.5,97.3] (97.3,100]  (89.1,91.8] (83.6,86.4] (94.5,97.3]
##  [853] (94.5,97.3] (70,72.7]   (72.7,75.5] (78.2,80.9] (83.6,86.4] (83.6,86.4]
##  [859] (91.8,94.5] (72.7,75.5] (91.8,94.5] (94.5,97.3] (97.3,100]  (89.1,91.8]
##  [865] (83.6,86.4] (97.3,100]  (78.2,80.9] (91.8,94.5] (80.9,83.6] (89.1,91.8]
##  [871] (97.3,100]  (72.7,75.5] (86.4,89.1] (97.3,100]  (83.6,86.4] (91.8,94.5]
##  [877] (72.7,75.5] (94.5,97.3] (94.5,97.3] (97.3,100]  (86.4,89.1] (97.3,100] 
##  [883] (94.5,97.3] (70,72.7]   (91.8,94.5] (86.4,89.1] (97.3,100]  (80.9,83.6]
##  [889] (75.5,78.2] (86.4,89.1] (70,72.7]   (86.4,89.1] (70,72.7]   (94.5,97.3]
##  [895] (83.6,86.4] (83.6,86.4] (70,72.7]   (75.5,78.2] (83.6,86.4] (91.8,94.5]
##  [901] (89.1,91.8] (94.5,97.3] (91.8,94.5] (72.7,75.5] (70,72.7]   (94.5,97.3]
##  [907] (72.7,75.5] (97.3,100]  (91.8,94.5] (70,72.7]   (94.5,97.3] (72.7,75.5]
##  [913] (91.8,94.5] (83.6,86.4] (80.9,83.6] (72.7,75.5] (97.3,100]  (86.4,89.1]
##  [919] (80.9,83.6] (86.4,89.1] (75.5,78.2] (83.6,86.4] (70,72.7]   (91.8,94.5]
##  [925] (80.9,83.6] (70,72.7]   (94.5,97.3] (70,72.7]   (91.8,94.5] (83.6,86.4]
##  [931] (70,72.7]   (97.3,100]  (91.8,94.5] (94.5,97.3] (94.5,97.3] (72.7,75.5]
##  [937] (75.5,78.2] (70,72.7]   (78.2,80.9] (89.1,91.8] (70,72.7]   (78.2,80.9]
##  [943] (83.6,86.4] (91.8,94.5] (89.1,91.8] (91.8,94.5] (91.8,94.5] (91.8,94.5]
##  [949] (94.5,97.3] (91.8,94.5] (80.9,83.6] (86.4,89.1] (94.5,97.3] (94.5,97.3]
##  [955] (78.2,80.9] (80.9,83.6] (97.3,100]  (70,72.7]   (78.2,80.9] (83.6,86.4]
##  [961] (83.6,86.4] (86.4,89.1] (86.4,89.1] (80.9,83.6] (89.1,91.8] (94.5,97.3]
##  [967] (83.6,86.4] (86.4,89.1] (70,72.7]   (80.9,83.6] (97.3,100]  (75.5,78.2]
##  [973] (83.6,86.4] (97.3,100]  (94.5,97.3] (83.6,86.4] (80.9,83.6] (89.1,91.8]
##  [979] (72.7,75.5] (83.6,86.4] (70,72.7]   (97.3,100]  (94.5,97.3] (72.7,75.5]
##  [985] (83.6,86.4] (70,72.7]   (94.5,97.3] (97.3,100]  (94.5,97.3] (83.6,86.4]
##  [991] (70,72.7]   (83.6,86.4] (94.5,97.3] (80.9,83.6] (78.2,80.9] (75.5,78.2]
##  [997] (97.3,100]  (83.6,86.4] (97.3,100]  (83.6,86.4]
## 11 Levels: (70,72.7] (72.7,75.5] (75.5,78.2] (78.2,80.9] ... (97.3,100]
tabla.intervalos <- transform(table(cut(muestra, breaks = nointervalos))) # son 6
tabla.intervalos
##           Var1 Freq
## 1    (70,72.7]   96
## 2  (72.7,75.5]   97
## 3  (75.5,78.2]   85
## 4  (78.2,80.9]   43
## 5  (80.9,83.6]   95
## 6  (83.6,86.4]  108
## 7  (86.4,89.1]   94
## 8  (89.1,91.8]   69
## 9  (91.8,94.5]   93
## 10 (94.5,97.3]  114
## 11  (97.3,100]  106
pie(tabla.intervalos$Freq, labels = paste(tabla.intervalos$Var1, "-", tabla.intervalos$Freq), main = "¿De cual intervalo hay mas y menos elementos?. Sturges")

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

• Primer paso, para poder sacar el resultado debemos saber qué tipo de algoritmo utilizaremos, debemos saber si existe una correlación entre los datos en este caso a la hora de sacar esto nos da una correlación de 0.8357631 lo cual significa que existe una correlación positiva considerable lo cual nos dice que los datos son candidatos para aplicarles una regresión lineal

• Al momento de realizar el modelo le metemos nuevos datos los cuales son las distancia del viaje y nos arrojó los resultados de que es el costo de viaje

• Y final mente el costo del viaje es más alto entre más largo sea el viaje