In this document, we will discuss the effect of supplement type and dose amount on the growth of teeth to know which of them has the great effect on tooth growth. The data used is ToothGrowth database.
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.2
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(datasets)
data <- ToothGrowth
str(data)
## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
summary(data)
## len supp dose
## Min. : 4.20 OJ:30 Min. :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25 Median :1.000
## Mean :18.81 Mean :1.167
## 3rd Qu.:25.27 3rd Qu.:2.000
## Max. :33.90 Max. :2.000
head(data)
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
## 5 6.4 VC 0.5
## 6 10.0 VC 0.5
ggplot(aes(x=supp, y=len), data=ToothGrowth) + geom_boxplot(aes(fill=supp)) + xlab("Supplement Delivery") + ylab("Tooth Length") + facet_grid(~ dose) + ggtitle("Tooth Length vs Delivery Method for different dosages") +
theme(plot.title = element_text(lineheight=.6))
mean <- aggregate(len ~ ., data = data, FUN=mean)
meanTabs <- xtabs(len ~ ., data = mean)
meanTabs
## dose
## supp 0.5 1 2
## OJ 13.23 22.70 26.06
## VC 7.98 16.77 26.14
suppTest <- t.test(data$len ~ data$supp)
suppTest$p.value
## [1] 0.06063451
g1 <- subset(ToothGrowth, data$dose == 0.5)
g2 <- subset(ToothGrowth, data$dose == 1.0)
g3 <- subset(ToothGrowth, data$dose == 2.0)
doseTest12 <- t.test(g1$len, g2$len)
doseTest12$p.value
## [1] 1.268301e-07
doseTest13 <- t.test(g1$len, g3$len)
doseTest13$p.value
## [1] 4.397525e-14
doseTest23 <- t.test(g2$len, g3$len)
doseTest23$p.value
## [1] 1.90643e-05
The dose p-values does not exceed 0.05 so they are statistically significance. While supplement p-value exceeds 0.05. This implies that dose amount has more effect on the teeth growth as by increasing dose amount, the teeth growth rate increases.