ModelStu003

## Welcome to DALEX (version: 1.0).
## Find examples and detailed introduction at: https://pbiecek.github.io/ema/
## Additional features will be available after installation of: ggpubr.
## Use 'install_dependencies()' to get all suggested dependencies
##  [1] "CRASH_NUM1"         "NARRATIVE"          "ACCESS_CNTL_CD"    
##  [4] "ALIGNMENT_CD"       "HWY_TYPE_CD"        "INVEST_AGENCY_CD"  
##  [7] "LIGHTING_CD"        "LOC_TYPE_CD"        "MAN_COLL_CD"       
## [10] "PRI_CONTRIB_FAC_CD" "ROAD_COND_CD"       "ROAD_REL_CD"       
## [13] "ROAD_TYPE_CD"       "SEC_CONTRIB_FAC_CD" "SEVERITY_CD"       
## [16] "SURF_COND_CD"       "SURF_TYPE_CD"       "WEATHER_CD"        
## [19] "CRASH_DATE"         "CRASH_TIME"         "CR_MONTH"          
## [22] "CR_HOUR"            "DAY_OF_WK"          "INTERSECTION"      
## [25] "NUM_VEH"            "LAT"                "LONG"              
## [28] "PARISH_CD"          "CITY_CD"            "TIME_AMB_ARR"      
## [31] "TIME_AMB_ARR_HOSP"  "HIT_AND_RUN"
## 'data.frame':    338 obs. of  32 variables:
##  $ CRASH_NUM1        : Factor w/ 338 levels "LA10_100109200922477",..: 1 2 3 4 8 5 6 7 13 9 ...
##  $ NARRATIVE         : Factor w/ 338 levels "-----on sunday august 4, 2012, corporal matthew cleland #9506 responded to a single vehicle crash with injuries"| __truncated__,..: 314 63 212 163 290 321 187 172 323 292 ...
##  $ ACCESS_CNTL_CD    : Factor w/ 4 levels "A","B","C","Z": 1 2 1 1 1 1 1 1 1 1 ...
##  $ ALIGNMENT_CD      : Factor w/ 9 levels "A","B","C","D",..: 1 1 1 1 1 1 1 4 1 1 ...
##  $ HWY_TYPE_CD       : Factor w/ 5 levels "A","B","C","D",..: 5 4 3 3 5 5 4 3 5 4 ...
##  $ INVEST_AGENCY_CD  : Factor w/ 3 levels "B","C","Z": 1 2 2 1 1 1 2 2 1 2 ...
##  $ LIGHTING_CD       : Factor w/ 7 levels "A","B","C","D",..: 3 1 1 1 1 1 1 4 3 1 ...
##  $ LOC_TYPE_CD       : Factor w/ 8 levels "A","B","C","D",..: 4 4 3 3 3 4 4 5 4 4 ...
##  $ MAN_COLL_CD       : Factor w/ 12 levels "A","B","C","D",..: 4 12 12 2 4 4 10 12 3 4 ...
##  $ PRI_CONTRIB_FAC_CD: Factor w/ 10 levels "A","B","C","D",..: 1 2 2 1 1 2 1 1 4 10 ...
##  $ ROAD_COND_CD      : Factor w/ 9 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ROAD_REL_CD       : Factor w/ 7 levels "A","B","C","D",..: 1 1 1 1 1 1 1 5 1 1 ...
##  $ ROAD_TYPE_CD      : Factor w/ 6 levels "A","B","C","D",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ SEC_CONTRIB_FAC_CD: Factor w/ 10 levels "A","B","C","D",..: 4 1 2 8 4 2 2 2 10 10 ...
##  $ SEVERITY_CD       : Factor w/ 5 levels "A","B","C","D",..: 3 4 4 3 2 2 3 4 2 4 ...
##  $ SURF_COND_CD      : Factor w/ 3 levels "A","B","Y": 1 1 1 1 1 1 1 1 1 1 ...
##  $ SURF_TYPE_CD      : Factor w/ 5 levels "A","B","D","Y",..: 2 2 2 2 1 2 2 2 1 2 ...
##  $ WEATHER_CD        : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 2 2 1 ...
##  $ CRASH_DATE        : int  40187 40225 40257 40296 40456 40379 40422 40429 40538 40475 ...
##  $ CRASH_TIME        : num  367 368 368 368 367 ...
##  $ CR_MONTH          : int  1 2 3 4 10 7 9 9 12 10 ...
##  $ CR_HOUR           : int  2 16 14 16 11 20 19 22 20 14 ...
##  $ DAY_OF_WK         : Factor w/ 7 levels "FR","MO","SA",..: 3 6 3 7 6 6 7 7 4 4 ...
##  $ INTERSECTION      : int  1 1 0 0 1 0 0 1 0 1 ...
##  $ NUM_VEH           : int  2 2 1 2 2 2 1 1 1 1 ...
##  $ LAT               : num  32.5 0 0 30.2 0 ...
##  $ LONG              : num  92.7 0 0 92.1 0 ...
##  $ PARISH_CD         : int  31 26 44 28 10 28 37 50 26 29 ...
##  $ CITY_CD           : int  4 0 0 5 4 4 0 0 5 0 ...
##  $ TIME_AMB_ARR      : num  367 368 368 368 367 ...
##  $ TIME_AMB_ARR_HOSP : num  367 367 367 368 367 ...
##  $ HIT_AND_RUN       : int  0 0 0 0 0 0 0 0 1 0 ...
## [1] 332   7
##   SEVERITY_CD DAY_OF_WK LIGHTING_CD HWY_TYPE_CD WEATHER_CD CR_HOUR NUM_VEH
## 1           C        SA           C           E          A       2       2
## 2           D        TU           A           D          A      16       2
## 3           D        SA           A           C          A      14       1
## 4           C        WE           A           C          A      16       2
## 5           B        TU           A           E          A      11       2
## 6           B        TU           A           E          A      20       2
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ranger':
## 
##     importance
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
## 
## Call:
##  randomForest(formula = SEVERITY_CD == "A" ~ ., data = mn02) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 2
## 
##           Mean of squared residuals: 0.003575175
##                     % Var explained: -19.05
## Preparation of a new explainer is initiated
##   -> model label       :  Random Forest v7 
##   -> data              :  332  rows  6  cols 
##   -> target variable   :  332  values 
##   -> model_info        :  package randomForest , ver. 4.6.14 , task regression (  default  ) 
##   -> predict function  :  yhat.randomForest  will be used (  default  )
##   -> predicted values  :  numerical, min =  -8.673617e-18 , mean =  0.003478108 , max =  0.2283204  
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  -0.2283204 , mean =  -0.0004660603 , max =  0.7716796  
##   A new explainer has been created!
##       variable mean_dropout_loss            label
## 1 _full_model_          2.507805 Random Forest v7
## 2  LIGHTING_CD          2.578274 Random Forest v7
## 3   WEATHER_CD          2.665051 Random Forest v7
## 4  HWY_TYPE_CD          2.848549 Random Forest v7
## 5      CR_HOUR          3.199140 Random Forest v7
## 6      NUM_VEH          3.271387 Random Forest v7

## Top profiles    : 
##   _vname_          _label_  _x_      _yhat_ _ids_
## 1 CR_HOUR Random Forest v7 1.00 0.002116324     0
## 2 CR_HOUR Random Forest v7 1.31 0.002116324     0
## 3 CR_HOUR Random Forest v7 2.00 0.002116324     0
## 4 CR_HOUR Random Forest v7 2.93 0.002116324     0
## 5 CR_HOUR Random Forest v7 3.72 0.002116324     0
## 6 CR_HOUR Random Forest v7 7.55 0.002116324     0

## 'variable_type' changed to 'categorical' due to lack of numerical variables.

## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
## 
##     margin
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## Loading required package: SparseM
## 
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
## 
##     backsolve
## Preparation of a new explainer is initiated
##   -> model label       :  Logistic regression 
##   -> data              :  332  rows  7  cols 
##   -> target variable   :  332  values 
##   -> model_info        :  package stats , ver. 3.6.2 , task regression (  default  ) 
##   -> predict function  :  function(m, x) predict(m, x, type = "fitted") 
##   -> predicted values  :  numerical, min =  1.478422e-21 , mean =  0.003017853 , max =  0.3538808  
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  -0.3538808 , mean =  -5.804906e-06 , max =  0.7209833  
##   A new explainer has been created! 
## Loaded gbm 2.1.5
## Distribution not specified, assuming multinomial ...
## Preparation of a new explainer is initiated
##   -> model label       :  Generalized Boosted Models 
##   -> data              :  332  rows  7  cols 
##   -> target variable   :  332  values 
##   -> model_info        :  package gbm , ver. 2.1.5 , task regression (  default  ) 
##   -> predict function  :  function(m, x) predict(m, x, n.trees = 15000, type = "response")
## Warning in predict.gbm(m, x, n.trees = 15000, type = "response"): Number of
## trees not specified or exceeded number fit so far. Using 1500.
##   -> predicted values  :  predict function returns multiple columns:  2  (  WARNING  ) some of functionalities may not work 
##   -> residual function :  difference between y and yhat (  default  )
## Warning in predict.gbm(m, x, n.trees = 15000, type = "response"): Number of
## trees not specified or exceeded number fit so far. Using 1500.
##   -> residuals         :  numerical, min =  -1 , mean =  -0.496988 , max =  0.538872  
##   A new explainer has been created!
## 
## Attaching package: 'e1071'
## The following object is masked from 'package:Hmisc':
## 
##     impute
## Preparation of a new explainer is initiated
##   -> model label       :  Support Vector Machines 
##   -> data              :  332  rows  7  cols 
##   -> target variable   :  332  values 
##   -> model_info        :  package e1071 , ver. 1.7.3 , task classification (  default  ) 
##   -> predict function  :  yhat.svm  will be used (  default  )
##   -> predicted values  :  numerical, min =  0.0004821902 , mean =  0.003251029 , max =  0.00693297  
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  -0.00693297 , mean =  -0.0002389809 , max =  0.993067  
##   A new explainer has been created!

2020-02-21