ModelStu002

## Welcome to DALEX (version: 1.0).
## Find examples and detailed introduction at: https://pbiecek.github.io/ema/
## Additional features will be available after installation of: ggpubr.
## Use 'install_dependencies()' to get all suggested dependencies
##  [1] "CRASH_NUM1"         "NARRATIVE"          "ACCESS_CNTL_CD"    
##  [4] "ALIGNMENT_CD"       "HWY_TYPE_CD"        "INVEST_AGENCY_CD"  
##  [7] "LIGHTING_CD"        "LOC_TYPE_CD"        "MAN_COLL_CD"       
## [10] "PRI_CONTRIB_FAC_CD" "ROAD_COND_CD"       "ROAD_REL_CD"       
## [13] "ROAD_TYPE_CD"       "SEC_CONTRIB_FAC_CD" "SEVERITY_CD"       
## [16] "SURF_COND_CD"       "SURF_TYPE_CD"       "WEATHER_CD"        
## [19] "CRASH_DATE"         "CRASH_TIME"         "CR_MONTH"          
## [22] "CR_HOUR"            "DAY_OF_WK"          "INTERSECTION"      
## [25] "NUM_VEH"            "LAT"                "LONG"              
## [28] "PARISH_CD"          "CITY_CD"            "TIME_AMB_ARR"      
## [31] "TIME_AMB_ARR_HOSP"  "HIT_AND_RUN"
## Ranger result
## 
## Call:
##  ranger(SEVERITY_CD ~ ., data = mn02, probability = TRUE, num.trees = 50) 
## 
## Type:                             Probability estimation 
## Number of trees:                  50 
## Sample size:                      338 
## Number of independent variables:  6 
## Mtry:                             2 
## Target node size:                 10 
## Variable importance mode:         none 
## Splitrule:                        gini 
## OOB prediction error (Brier s.):  0.4839634
## Preparation of a new explainer is initiated
##   -> model label       :  Ranger Multilabel Classification 
##   -> data              :  338  rows  6  cols 
##   -> target variable   :  338  values 
##   -> target variable   :  Please note that 'y' is a factor.  (  WARNING  )
##   -> target variable   :  Consider changing the 'y' to a logical or numerical vector.
##   -> target variable   :  Otherwise I will not be able to calculate residuals or loss function.
##   -> model_info        :  package ranger , ver. 0.12.1 , task classification (  default  ) 
##   -> predict function  :  yhat.ranger  will be used (  default  )
##   -> predicted values  :  predict function returns multiple columns:  5  (  WARNING  ) some of functionalities may not work 
##   -> residual function :  difference between y and yhat (  default  )
## Warning in Ops.factor(y, predict_function(model, data)): '-' not meaningful for
## factors
##   -> residuals         :  numerical, min =  NA , mean =  NA , max =  NA  
##   A new explainer has been created!
##  [1] 3 4 4 3 2 2 3 4 2 4
## Preparation of a new explainer is initiated
##   -> model label       :  Ranger Multilabel Classification 
##   -> data              :  338  rows  6  cols 
##   -> target variable   :  338  values 
##   -> model_info        :  package ranger , ver. 0.12.1 , task classification (  default  ) 
##   -> predict function  :  yhat.ranger  will be used (  default  )
##   -> predicted values  :  predict function returns multiple columns:  5  (  WARNING  ) some of functionalities may not work 
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  0.5780405 , mean =  3.711243 , max =  5  
##   A new explainer has been created!

## Warning in if (class(new_observation_ext) != "data.frame") {: the condition has
## length > 1 and only the first element will be used

## Warning in if (class(new_observation_ext) != "data.frame") {: the condition has
## length > 1 and only the first element will be used

## Preparation of a new explainer is initiated
##   -> model label       :  Ranger Multilabel Classification 
##   -> data              :  338  rows  6  cols 
##   -> target variable   :  338  values 
##   -> target variable   :  Please note that 'y' is a factor.  (  WARNING  )
##   -> target variable   :  Consider changing the 'y' to a logical or numerical vector.
##   -> target variable   :  Otherwise I will not be able to calculate residuals or loss function.
##   -> model_info        :  package ranger , ver. 0.12.1 , task classification (  default  ) 
##   -> predict function  :  yhat.ranger  will be used (  default  )
##   -> predicted values  :  predict function returns multiple columns:  5  (  WARNING  ) some of functionalities may not work 
##   -> residual function :  residual_function 
##   -> residuals         :  numerical, min =  0.2261979 , mean =  0.5522091 , max =  0.9241105  
##   A new explainer has been created!
## Warning in ks.test(residuals_all, residuals_sel): p-value will be approximate in
## the presence of ties

## Warning in if (class(new_observation_ext) != "data.frame") {: the condition has
## length > 1 and only the first element will be used
## Warning in if (class(new_observation_ext) != "data.frame") {: the condition has
## length > 1 and only the first element will be used

2020-02-21