ModelStu001

## Welcome to DALEX (version: 1.0).
## Find examples and detailed introduction at: https://pbiecek.github.io/ema/
## Additional features will be available after installation of: ggpubr.
## Use 'install_dependencies()' to get all suggested dependencies
## Warning in require_bit64_if_needed(ans): Some columns are type 'integer64'
## but package bit64 is not installed. Those columns will print as strange
## looking floating point data. There is no need to reload the data. Simply
## install.packages('bit64') to obtain the integer64 print method and print the
## data again.
## [1] 11498    86
## Ranger result
## 
## Call:
##  ranger(FC_RU ~ ., data = mn02, probability = TRUE, num.trees = 50) 
## 
## Type:                             Probability estimation 
## Number of trees:                  50 
## Sample size:                      10780 
## Number of independent variables:  8 
## Mtry:                             2 
## Target node size:                 10 
## Variable importance mode:         none 
## Splitrule:                        gini 
## OOB prediction error (Brier s.):  0.1744989
## Preparation of a new explainer is initiated
##   -> model label       :  Ranger Multilabel Classification 
##   -> data              :  10780  rows  8  cols 
##   -> target variable   :  10780  values 
##   -> target variable   :  Please note that 'y' is a factor.  (  WARNING  )
##   -> target variable   :  Consider changing the 'y' to a logical or numerical vector.
##   -> target variable   :  Otherwise I will not be able to calculate residuals or loss function.
##   -> model_info        :  package ranger , ver. 0.12.1 , task classification (  default  ) 
##   -> predict function  :  yhat.ranger  will be used (  default  )
##   -> predicted values  :  predict function returns multiple columns:  3  (  WARNING  ) some of functionalities may not work 
##   -> residual function :  difference between y and yhat (  default  )
## Warning in Ops.factor(y, predict_function(model, data)): '-' not meaningful for
## factors
##   -> residuals         :  numerical, min =  NA , mean =  NA , max =  NA  
##   A new explainer has been created!
## Preparation of a new explainer is initiated
##   -> model label       :  Ranger Multilabel Classification 
##   -> data              :  10780  rows  8  cols 
##   -> target variable   :  10780  values 
##   -> model_info        :  package ranger , ver. 0.12.1 , task classification (  default  ) 
##   -> predict function  :  yhat.ranger  will be used (  default  )
##   -> predicted values  :  predict function returns multiple columns:  3  (  WARNING  ) some of functionalities may not work 
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  0.002222222 , mean =  1.727706 , max =  3  
##   A new explainer has been created!

## Warning in if (class(new_observation_ext) != "data.frame") {: the condition has
## length > 1 and only the first element will be used

2020-02-21