## Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
Data summary
| Name |
iris |
| Number of rows |
150 |
| Number of columns |
5 |
| _______________________ |
|
| Column type frequency: |
|
| factor |
1 |
| numeric |
4 |
| ________________________ |
|
| Group variables |
None |
Variable type: factor
| Species |
0 |
1 |
FALSE |
3 |
set: 50, ver: 50, vir: 50 |
Variable type: numeric
| Sepal.Length |
0 |
1 |
5.84 |
0.83 |
4.3 |
5.1 |
5.80 |
6.4 |
7.9 |
▆▇▇▅▂ |
| Sepal.Width |
0 |
1 |
3.06 |
0.44 |
2.0 |
2.8 |
3.00 |
3.3 |
4.4 |
▁▆▇▂▁ |
| Petal.Length |
0 |
1 |
3.76 |
1.77 |
1.0 |
1.6 |
4.35 |
5.1 |
6.9 |
▇▁▆▇▂ |
| Petal.Width |
0 |
1 |
1.20 |
0.76 |
0.1 |
0.3 |
1.30 |
1.8 |
2.5 |
▇▁▇▅▃ |
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1






## Registered S3 methods overwritten by 'broom.mixed':
## method from
## augment.lme broom
## augment.merMod broom
## glance.lme broom
## glance.merMod broom
## glance.stanreg broom
## tidy.brmsfit broom
## tidy.gamlss broom
## tidy.lme broom
## tidy.merMod broom
## tidy.rjags broom
## tidy.stanfit broom
## tidy.stanreg broom
## Registered S3 methods overwritten by 'car':
## method from
## influence.merMod lme4
## cooks.distance.influence.merMod lme4
## dfbeta.influence.merMod lme4
## dfbetas.influence.merMod lme4
## Loading required package: Matrix
## [1] 158 8
## # A tibble: 6 x 8
## title year length budget rating votes mpaa genre
## <chr> <int> <int> <dbl> <dbl> <int> <fct> <fct>
## 1 Shipping News, The 2001 111 35 6.9 7695 R Romance Drama
## 2 Rosewood 1997 140 31 6.8 1840 R Action Drama
## 3 Punch-Drunk Love 2002 95 25 7.5 18169 R RomCom
## 4 Get on the Bus 1996 120 2.4 6.6 1142 R Drama
## 5 Grosse Pointe Blank 1997 107 15 7.4 20400 R RomCom
## 6 Kansas City 1996 116 19 5.8 1077 R Drama
# combining the two different plots
ggstatsplot::combine_plots(
# model 1: simple linear model
ggstatsplot::ggcoefstats(
x = stats::lm(
formula = scale(rating) ~ scale(budget),
data = movies_10
),
title = "linear model",
stats.label.color = "black",
exclude.intercept = FALSE # show the intercept
) +
ggplot2::labs(x = parse(text = "'standardized regression coefficient' ~italic(beta)")),
# model 2: linear mixed-effects model
ggstatsplot::ggcoefstats(
x = lme4::lmer(
formula = scale(rating) ~ scale(budget) + (budget | genre),
data = movies_10,
control = lme4::lmerControl(calc.derivs = FALSE)
),
title = "linear mixed-effects model",
stats.label.color = "black",
exclude.intercept = FALSE
) +
ggplot2::labs(
x = parse(text = "'standardized regression coefficient' ~italic(beta)"),
y = "fixed effects"
),
labels = c("(a)", "(b)"),
nrow = 2,
ncol = 1,
title.text = "Relationship between movie budget and its IMDB rating"
)

## # A tibble: 6 x 8
## effect group term estimate std.error statistic conf.low conf.high
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 fixed <NA> (Intercept) -4.98e-2 0.147 -0.339 -0.338 0.238
## 2 fixed <NA> scale(budget) 4.28e-2 0.0806 0.531 -0.115 0.201
## 3 ran_pa~ genre sd__(Intercep~ 3.87e-1 NA NA NA NA
## 4 ran_pa~ genre sd__budget 8.43e-4 NA NA NA NA
## 5 ran_pa~ genre cor__(Interce~ -1.00e+0 NA NA NA NA
## 6 ran_pa~ Residu~ sd__Observati~ 9.49e-1 NA NA NA NA
## Note: No model diagnostics information available, so skipping caption.
##

## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX



## 'data.frame': 32 obs. of 5 variables:
## $ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 1 2 3 4 1 2 3 4 1 2 ...
## $ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 2 2 2 2 1 1 ...
## $ Age : Factor w/ 2 levels "Child","Adult": 1 1 1 1 1 1 1 1 2 2 ...
## $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ Freq : num 0 0 35 0 0 0 17 0 118 154 ...
#> 'data.frame': 32 obs. of 5 variables:
#> $ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 1 2 3 4 1 2 3 4 1 2 ...
#> $ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 2 2 2 2 1 1 ...
#> $ Age : Factor w/ 2 levels "Child","Adult": 1 1 1 1 1 1 1 1 2 2 ...
#> $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Freq : num 0 0 35 0 0 0 17 0 118 154 ...
# model
mod <-
stats::glm(
formula = Survived ~ Sex + Age,
data = df,
weights = df$Freq,
family = stats::binomial(link = "logit")
)
# plot
ggstatsplot::ggcoefstats(
x = mod,
exponentiate = TRUE,
ggtheme = ggthemes::theme_economist_white(),
title = "generalized linear model (glm)",
vline.color = "red",
vline.linetype = "solid",
label.segment.color = "red",
stats.label.color = c("orangered", "dodgerblue")
)

## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v tibble 2.1.3 v dplyr 0.8.4
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## v purrr 0.3.3
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
## To enable
## caching of data, set `options(tigris_use_cache = TRUE)` in your R script or .Rprofile.
##
## Attaching package: 'tigris'
## The following object is masked from 'package:graphics':
##
## plot
## Loading required package: viridisLite
## To install your API key for use in future sessions, run this function with `install = TRUE`.
## Getting data from the 1990 decennial Census
## # A tibble: 6 x 4
## GEOID NAME variable value
## <chr> <chr> <chr> <dbl>
## 1 01 Alabama H043A001 325
## 2 02 Alaska H043A001 559
## 3 04 Arizona H043A001 438
## 4 05 Arkansas H043A001 328
## 5 06 California H043A001 620
## 6 08 Colorado H043A001 418

## # A tibble: 6 x 3
## name label concept
## <chr> <chr> <chr>
## 1 B00001_001 Estimate!!Total UNWEIGHTED SAMPLE COUNT OF THE POP~
## 2 B00002_001 Estimate!!Total UNWEIGHTED SAMPLE HOUSING UNITS
## 3 B01001_001 Estimate!!Total SEX BY AGE
## 4 B01001_002 Estimate!!Total!!Male SEX BY AGE
## 5 B01001_003 Estimate!!Total!!Male!!Under 5~ SEX BY AGE
## 6 B01001_004 Estimate!!Total!!Male!!5 to 9 ~ SEX BY AGE
## Getting data from the 2013-2017 5-year ACS
## # A tibble: 6 x 5
## GEOID NAME variable estimate moe
## <chr> <chr> <chr> <dbl> <dbl>
## 1 13121000100 Census Tract 1, Fulton County, Georgia medincome 149450 23192
## 2 13121000200 Census Tract 2, Fulton County, Georgia medincome 116094 18910
## 3 13121000400 Census Tract 4, Fulton County, Georgia medincome 91857 21546
## 4 13121000500 Census Tract 5, Fulton County, Georgia medincome 85750 23402
## 5 13121000600 Census Tract 6, Fulton County, Georgia medincome 50969 8609
## 6 13121000700 Census Tract 7, Fulton County, Georgia medincome 71214 10372
## Getting data from the 2013-2017 5-year ACS
## # A tibble: 6 x 6
## GEOID NAME medincomeE medincomeM medhomevalueE medhomevalueM
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1312100~ Census Tract 18, F~ 42159 9769 136500 20463
## 2 1312100~ Census Tract 32, F~ 84350 23612 228700 20385
## 3 1312100~ Census Tract 36, F~ 41372 8278 175900 25191
## 4 1312100~ Census Tract 68.01~ NA NA NA NA
## 5 1312100~ Census Tract 88, F~ 95524 17032 285100 32455
## 6 1312101~ Census Tract 105.1~ 30819 5281 92800 39929
ga1 %>%
mutate(NAME = gsub(", Fulton County, Georgia", "", NAME), # clean the name field
rank = min_rank(desc(estimate))) %>% # create a rank variable in descending order
filter(rank<=10) %>% # keep top 10 wealthiest tracts
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_errorbarh(aes(xmin = estimate - moe, xmax = estimate + moe)) +
geom_point(color = "red", size = 3) +
labs(title = "Household income by tract in Fulton County, Georgia",
subtitle = "2013-2017 American Community Survey",
y = "",
x = "ACS estimate (bars represent margin of error)")

ga1 %>%
mutate(NAME = gsub(", Fulton County, Georgia", "", NAME),
rank = min_rank(estimate)) %>% # create a rank variable in descending order
filter(rank<=10) %>% # keep bottom 10 least-wealthy tracts
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_errorbarh(aes(xmin = estimate - moe, xmax = estimate + moe)) +
geom_point(color = "red", size = 3) +
labs(title = "Household income by tract in Fulton County, Georgia",
subtitle = "2013-2017 American Community Survey",
y = "",
x = "ACS estimate (bars represent margin of error)")

## Getting data from the 2013-2017 5-year ACS
##
|
| | 0%
|
|======================================================================| 100%
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 16 kB
Downloading: 16 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 25 kB
Downloading: 41 kB
Downloading: 41 kB
Downloading: 41 kB
Downloading: 41 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 81 kB
Downloading: 81 kB
Downloading: 81 kB
Downloading: 81 kB
Downloading: 81 kB
Downloading: 81 kB
Downloading: 89 kB
Downloading: 89 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 90 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 770 kB
Downloading: 770 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 900 kB
Downloading: 900 kB
Downloading: 900 kB
Downloading: 900 kB
Downloading: 900 kB
Downloading: 900 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
## Simple feature collection with 6 features and 5 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.43234 ymin: 33.77138 xmax: -84.34816 ymax: 33.81313
## epsg (SRID): 4269
## proj4string: +proj=longlat +datum=NAD83 +no_defs
## GEOID NAME variable estimate moe
## 1 13121000100 Census Tract 1, Fulton County, Georgia B19013_001 149450 23192
## 2 13121000200 Census Tract 2, Fulton County, Georgia B19013_001 116094 18910
## 3 13121000400 Census Tract 4, Fulton County, Georgia B19013_001 91857 21546
## 4 13121000500 Census Tract 5, Fulton County, Georgia B19013_001 85750 23402
## 5 13121000600 Census Tract 6, Fulton County, Georgia B19013_001 50969 8609
## 6 13121000700 Census Tract 7, Fulton County, Georgia B19013_001 71214 10372
## geometry
## 1 MULTIPOLYGON (((-84.36737 3...
## 2 MULTIPOLYGON (((-84.37421 3...
## 3 MULTIPOLYGON (((-84.38757 3...
## 4 MULTIPOLYGON (((-84.40086 3...
## 5 MULTIPOLYGON (((-84.41522 3...
## 6 MULTIPOLYGON (((-84.43234 3...

## Getting data from the 2010 decennial Census
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 5%
|
|==== | 5%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|========= | 13%
|
|========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|=================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|===================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================== | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|======================================================================| 100%
## Simple feature collection with 6 features and 5 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.11389 ymin: 34.0433 xmax: -83.94986 ymax: 34.16787
## epsg (SRID): 4269
## proj4string: +proj=longlat +datum=NAD83 +no_defs
## # A tibble: 6 x 6
## GEOID NAME variable value summary_value geometry
## <chr> <chr> <chr> <dbl> <dbl> <MULTIPOLYGON [°]>
## 1 13135~ Census Tr~ White 6021 9882 (((-84.04025 34.11132, -84.042~
## 2 13135~ Census Tr~ White 1725 3651 (((-84.02758 34.10506, -84.027~
## 3 13135~ Census Tr~ White 5477 9513 (((-83.97996 34.08514, -83.980~
## 4 13135~ Census Tr~ White 4543 6798 (((-84.0585 34.12659, -84.0601~
## 5 13135~ Census Tr~ White 6809 9660 (((-84.04206 34.11135, -84.040~
## 6 13135~ Census Tr~ White 3873 7056 (((-84.02768 34.10508, -84.027~

## Getting data from the 2014-2018 5-year ACS
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================== | 48%
|
|=================================== | 50%
|
|==================================== | 51%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================== | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|============================================ | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 68%
|
|================================================ | 69%
|
|================================================= | 71%
|
|================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================= | 92%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%