###Proceso: #### Generar los datos de cada distribución #### Graficar cada distribución #### Generar media, varianza y desv std de cada distribución #### Determinar coefienciente de variación ### Generar el percentil 60 y 80 de cada distribución #### Generar cuartiles de cada distribución
set.seed(1000)
dist1 <- sample(70:100, size = 50, replace=TRUE)
dist2 <- sample(70:100, size = 50, replace=TRUE)
dist3 <- sample(70:100, size = 50, replace=TRUE)
dist1
## [1] 85 73 80 91 88 93 98 72 98 87 91 75 82 75 70 78 98 95 95 97 92 87 74 99 88
## [26] 85 95 98 79 78 95 76 93 81 86 91 93 97 96 77 88 72 96 75 76 82 91 75 76 85
dist2
## [1] 97 77 72 90 87 82 99 87 85 86 86 72 82 83 77 100 77 80 93
## [20] 96 81 81 95 79 80 93 95 85 84 81 75 78 91 90 80 90 100 80
## [39] 79 79 70 96 94 78 76 83 100 94 86 71
dist3
## [1] 76 76 86 72 94 83 71 70 88 90 75 77 89 100 73 78 91 92 83
## [20] 94 85 97 74 88 94 95 100 88 100 100 98 90 72 86 93 78 91 97
## [39] 78 99 74 85 73 78 75 97 81 94 80 88
sort(dist1)
hist(dist1)
stem(dist1)
table(dist1)
sort(table(dist1))
plot(dist1, col = "red")
plot(dist2, col = "blue")
plot(dist3, col = "green")
mean(dist1)
## [1] 85.94
mean(dist2)
## [1] 85.04
mean(dist3)
## [1] 85.72
var(dist1)
## [1] 79.73102
var(dist2)
## [1] 69.01878
var(dist3)
## [1] 88.65469
sd(dist1)
## [1] 8.929223
sd(dist2)
## [1] 8.307754
sd(dist3)
## [1] 9.415662
sd(dist1) / mean(dist1) * 100
## [1] 10.39007
sd(dist2) / mean(dist2) * 100
## [1] 9.769231
sd(dist3) / mean(dist3) * 100
## [1] 10.98421
quantile (dist1, prob = c(0.60, 0.80))
## 60% 80%
## 91 95
quantile (dist2, prob = c(0.60, 0.80))
## 60% 80%
## 86 94
quantile (dist3, prob = c(0.60, 0.80))
## 60% 80%
## 89.4 94.2
quantile (dist1, prob = c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 77.25 87.00 94.50
quantile (dist2, prob = c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 79.0 83.5 92.5
quantile (dist3, prob = c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 77.25 87.00 94.00
```