Los datos

set.seed(1000)

dist1 <- sample(70:100, size = 50, replace=TRUE)
dist2 <- sample(70:100, size = 50, replace=TRUE)
dist3 <- sample(70:100, size = 50, replace=TRUE)

dist1
##  [1] 85 73 80 91 88 93 98 72 98 87 91 75 82 75 70 78 98 95 95 97 92 87 74 99 88
## [26] 85 95 98 79 78 95 76 93 81 86 91 93 97 96 77 88 72 96 75 76 82 91 75 76 85
dist2
##  [1]  97  77  72  90  87  82  99  87  85  86  86  72  82  83  77 100  77  80  93
## [20]  96  81  81  95  79  80  93  95  85  84  81  75  78  91  90  80  90 100  80
## [39]  79  79  70  96  94  78  76  83 100  94  86  71
dist3
##  [1]  76  76  86  72  94  83  71  70  88  90  75  77  89 100  73  78  91  92  83
## [20]  94  85  97  74  88  94  95 100  88 100 100  98  90  72  86  93  78  91  97
## [39]  78  99  74  85  73  78  75  97  81  94  80  88

Ordenar datos, histograma, grárfica de tallo y hoja, generar frecuencias, ordenar frecuencias

sort(dist1)
hist(dist1)
stem(dist1)
table(dist1)
sort(table(dist1))

Plots

plot(dist1, col = "red")

plot(dist2, col = "blue")

plot(dist3, col = "green")

Medias de cada distribución

mean(dist1)
## [1] 85.94
mean(dist2)
## [1] 85.04
mean(dist3)
## [1] 85.72

Varianzas de cada distribución

var(dist1)
## [1] 79.73102
var(dist2)
## [1] 69.01878
var(dist3)
## [1] 88.65469

Desviaciones Estándar de cada distribución

sd(dist1)
## [1] 8.929223
sd(dist2)
## [1] 8.307754
sd(dist3)
## [1] 9.415662

La Desviación Estándar significa que tanto se alejan en promedio cada observación con respecto a la media

Coeficiente de variación

sd(dist1) / mean(dist1) * 100
## [1] 10.39007
sd(dist2) / mean(dist2) * 100
## [1] 9.769231
sd(dist3) / mean(dist3) * 100
## [1] 10.98421

¿Cuál distribución tiene menor hetereogeneidad ? ó ¿menor dispersión?

Generar el percentil 60 y 80 de cada distribución

quantile (dist1, prob = c(0.60, 0.80))
## 60% 80% 
##  91  95
quantile (dist2, prob = c(0.60, 0.80))
## 60% 80% 
##  86  94
quantile (dist3, prob = c(0.60, 0.80))
##  60%  80% 
## 89.4 94.2

Generar cuartiles de cada distribución

quantile (dist1, prob = c(0.25, 0.50, 0.75))
##   25%   50%   75% 
## 77.25 87.00 94.50
quantile (dist2, prob = c(0.25, 0.50, 0.75))
##  25%  50%  75% 
## 79.0 83.5 92.5
quantile (dist3, prob = c(0.25, 0.50, 0.75))
##   25%   50%   75% 
## 77.25 87.00 94.00

``` En esta nueva practica se ve nuevos conceptos como lo son percentiles y cuartiles, son bases de datos más especificos para la interpretación de información. Al igual que anteriormente, se presenta las medias centrales (moda,mediana,media) que también son bases de datos para contener información más precisa y resumida. También se representó la información en gráficas que son útiles al momento de ver las cosas más visuales y precisas. Cada vez obtenemos informacion más especifica y precisa sobre la base de datos y que es de gran ayuda para tener organizado y resumidos sobre lo que se quiere saber.