y=c(-2,-1,0,-1,0,1,0,1,2)
group=c('g1','g1','g1','g2','g2','g2','g3','g3','g3')
sub=as.factor(1:9)
ques1.df=data.frame(sub,y,group)
ques1.lm=lm(y~group., data=lab2)
ques1.anova=anova(ques1.lm)
print(ques1.anova)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## group. 2 6 3 3 0.125
## Residuals 6 6 1
ques1.aov=aov(ques1.lm)
print(ques1.aov)
## Call:
## aov(formula = ques1.lm)
##
## Terms:
## group. Residuals
## Sum of Squares 6 6
## Deg. of Freedom 2 6
##
## Residual standard error: 1
## Estimated effects may be unbalanced
summary(ques1.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## group. 2 6 3 3 0.125
## Residuals 6 6 1
model.tables(ques1.aov, type='means')
## Tables of means
## Grand mean
##
## 3.700743e-17
##
## group.
## group.
## g1 g2 g3
## -1 0 1
boxplot(y~group., data=lab2)
Yes, the numbers match the ones we produced in class.
y=c(5, 12, 9, 8, 11, 1, 2, 7, 3, 8, 10, 13, 16, 12, 17)
group=c('g1','g1','g1','g1','g1','g2','g2','g2','g2','g2','g3','g3','g3','g3','g3')
sub=as.factor(1:15)
ques2.lm=lm(Y~Group, data=Lab2.2)
ques2.anova=anova(ques2.lm)
print(ques2.anova)
## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 220.93 110.47 12.996 0.0009929 ***
## Residuals 12 102.00 8.50
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ques2.aov=aov(ques2.lm)
print(ques2.aov)
## Call:
## aov(formula = ques2.lm)
##
## Terms:
## Group Residuals
## Sum of Squares 220.9333 102.0000
## Deg. of Freedom 2 12
##
## Residual standard error: 2.915476
## Estimated effects may be unbalanced
summary(ques2.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 220.9 110.5 13 0.000993 ***
## Residuals 12 102.0 8.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model.tables(ques2.aov, type='means')
## Tables of means
## Grand mean
##
## 8.933333
##
## Group
## Group
## g1 g2 g3
## 9.0 4.2 13.6
plot(Y~Group,data=Lab2.2)
y=c(7, 8, 9, 10, 11, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15)
group=c('A1B1','A1B1','A1B1','A1B1','A1B1','A1B2','A1B2','A1B2','A1B2','A1B2','A2B1','A2B1','A2B1','A2B1','A2B1','A2B2','A2B2','A2B2','A2B2','A2B2')
sub=as.factor(1:20)
ques4.lm=lm(Y~A*B, data=Lab2.4)
ques4.anova=anova(ques4.lm)
print(ques4.anova)
## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 5 5.0 2 0.1764632
## B 1 45 45.0 18 0.0006207 ***
## A:B 1 125 125.0 50 2.646e-06 ***
## Residuals 16 40 2.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(1,2))
plot(Y ~ A + B, data=Lab2.4)
interaction.plot(Lab2.4$A, Lab2.4$B, Lab2.4$Y)