## Warning: package 'BayesLCA' was built under R version 3.6.2
## Loading required package: e1071
## Loading required package: coda
## Hallucination Activity Aggression Agitation Diurnal Affective
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Restart number 1, logpost = -749.44...
## Restart number 2, logpost = -749.44...
## New maximum found... Restart number 3, logpost = -749.42...
## Restart number 4, logpost = -749.44...
## Restart number 5, logpost = -749.44...
## __________________
##
## Bayes-LCA
## Diagnostic Summary
## __________________
##
## Hyper-Parameters:
##
## Item Probabilities:
##
## alpha:
## Hallucination Activity Aggression Agitation Diurnal Affective
## Group 1 1 1 1 1 1 1
## Group 2 1 1 1 1 1 1
##
## beta:
## Hallucination Activity Aggression Agitation Diurnal Affective
## Group 1 1 1 1 1 1 1
## Group 2 1 1 1 1 1 1
##
## Class Probabilities:
##
## delta:
## Group 1 Group 2
## 1 1
## __________________
##
## Method: EM algorithm
##
## Number of iterations: 24
##
## Log-Posterior Increase at Convergence: 0.0004977783
##
## Log-Posterior: -749.4208
##
## AIC: -1524.842
##
## BIC: -1570.09
## Restart number 1, logpost = -743.98...
## Restart number 2, logpost = -745.03...
## Restart number 3, logpost = -745.04...
## Restart number 4, logpost = -744.28...
## Restart number 5, logpost = -745.03...
## Restart number 6, logpost = -744.28...
## Restart number 7, logpost = -744.68...
## Restart number 8, logpost = -745.04...
## Restart number 9, logpost = -745.03...
## New maximum found... Restart number 10, logpost = -742.79...
## Restart number 11, logpost = -744.28...
## Restart number 12, logpost = -744.28...
## Restart number 13, logpost = -744.29...
## Restart number 14, logpost = -742.79...
## Restart number 15, logpost = -744.29...
## Restart number 16, logpost = -745.03...
## Restart number 17, logpost = -742.8...
## Restart number 18, logpost = -745.04...
## Restart number 19, logpost = -747.55...
## Restart number 20, logpost = -745.03...
## __________________
##
## Bayes-LCA
## Diagnostic Summary
## __________________
##
## Hyper-Parameters:
##
## Item Probabilities:
##
## alpha:
## Hallucination Activity Aggression Agitation Diurnal Affective
## Group 1 1 1 1 1 1 1
## Group 2 1 1 1 1 1 1
## Group 3 1 1 1 1 1 1
##
## beta:
## Hallucination Activity Aggression Agitation Diurnal Affective
## Group 1 1 1 1 1 1 1
## Group 2 1 1 1 1 1 1
## Group 3 1 1 1 1 1 1
##
## Class Probabilities:
##
## delta:
## Group 1 Group 2 Group 3
## 1 1 1
## __________________
##
## Method: EM algorithm
##
## Number of iterations: 43
##
## Log-Posterior Increase at Convergence: 0.0008143277
##
## Log-Posterior: -742.7946
##
## AIC: -1524.203
##
## BIC: -1593.816
## Initialising sampler...starting burn-in.
## Burn-in completed...
## 1000 of 5000 samples completed...
## 2000 of 5000 samples completed...
## 3000 of 5000 samples completed...
## 4000 of 5000 samples completed...
## 5000 of 5000 samples completed...
## Sampling run completed.
## Warning in blca.gibbs(Alzheimer, 2): Label-switching (provisionally)
## corrected for - diagnostic plots are recommended. Use '?plot.blca' for
## details.
##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95
##
## Burn-in Total Lower bound Dependence
## (M) (N) (Nmin) factor (I)
## ClassProb 1 18 19341 3746 5.16
## ClassProb 2 32 29960 3746 8.00
## ItemProb 1 1 4 4955 3746 1.32
## ItemProb 1 2 8 10664 3746 2.85
## ItemProb 1 3 12 13382 3746 3.57
## ItemProb 1 4 18 19678 3746 5.25
## ItemProb 1 5 16 15640 3746 4.18
## ItemProb 1 6 16 19736 3746 5.27
## ItemProb 2 1 6 8244 3746 2.20
## ItemProb 2 2 15 18453 3746 4.93
## ItemProb 2 3 21 24489 3746 6.54
## ItemProb 2 4 18 20676 3746 5.52
## ItemProb 2 5 15 22893 3746 6.11
## ItemProb 2 6 21 27390 3746 7.31




type1 <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(type1,type2), c(0.6,0.4))
set.seed(1)
fit <- blca(x, 2) ## EM algorithm used, warning returned
## Restart number 1, logpost = -2450.37...
## New maximum found... Restart number 2, logpost = -2450.37...
## Restart number 3, logpost = -2450.37...
## New maximum found... Restart number 4, logpost = -2450.37...
## Restart number 5, logpost = -2450.37...
##
## MAP Estimates:
##
##
## Item Probabilities:
##
## Col 1 Col 2 Col 3 Col 4
## Group 1 0.82 0.793 0.196 0.233
## Group 2 0.13 0.237 0.816 0.813
##
## Membership Probabilities:
##
## Group 1 Group 2
## 0.595 0.405
## Warning: Posterior standard deviations not returned.
## __________________
##
## Bayes-LCA
## Diagnostic Summary
## __________________
##
## Hyper-Parameters:
##
## Item Probabilities:
##
## alpha:
## Col 1 Col 2 Col 3 Col 4
## Group 1 1 1 1 1
## Group 2 1 1 1 1
##
## beta:
## Col 1 Col 2 Col 3 Col 4
## Group 1 1 1 1 1
## Group 2 1 1 1 1
##
## Class Probabilities:
##
## delta:
## Group 1 Group 2
## 1 1
## __________________
##
## Method: EM algorithm
##
## Number of iterations: 27
##
## Log-Posterior Increase at Convergence: 0.001011169
##
## Log-Posterior: -2450.371
##
## AIC: -4918.742
##
## BIC: -4962.912
## Restart number 1, logpost = -2450.37...
## New maximum found... Restart number 2, logpost = -2450.37...
## Restart number 3, logpost = -2450.37...
## New maximum found... Restart number 4, logpost = -2450.37...
## Restart number 5, logpost = -2450.37...
##
## MAP Estimates:
##
##
## Item Probabilities:
##
## Col 1 Col 2 Col 3 Col 4
## Group 1 0.82 0.793 0.196 0.233
## Group 2 0.13 0.237 0.816 0.813
##
## Membership Probabilities:
##
## Group 1 Group 2
## 0.595 0.405
##
## Posterior Standard Deviation Estimates:
##
##
## Item Probabilities:
##
## Col 1 Col 2 Col 3 Col 4
## Group 1 0.022 0.021 0.020 0.021
## Group 2 0.025 0.026 0.027 0.026
##
## Membership Probabilities:
##
## Group 1 Group 2
## 0.023 0.023
## Restart number 1, logpost = -6945.23...
##
## MAP Estimates:
##
##
## Item Probabilities:
##
## Col 1 Col 2 Col 3 Col 4
## Group 1 0.821 0.794 0.197 0.234
## Group 2 0.135 0.240 0.815 0.813
##
## Membership Probabilities:
##
## Group 1 Group 2
## 0.593 0.407
##
## Posterior Standard Deviation Estimates:
##
##
## Item Probabilities:
##
## Col 1 Col 2 Col 3 Col 4
## Group 1 0.016 0.017 0.016 0.017
## Group 2 0.017 0.021 0.019 0.019
##
## Membership Probabilities:
##
## Group 1 Group 2
## 0.015 0.015
