mlr01

##    y group time id     offset
## 1 12     0    0  1  0.1382749
## 2 15     0    1  1 -0.3795184
## 3  6     0    2  1 -0.2060559
## 4 14     0    0  2 -0.1336986
## 5 33     0    1  2  0.3672245
## 6 16     0    2  2  0.1079441
##    y group age
## 1 19     0   2
## 2 61     0   6
## 3 60     0   5
## 4 66     0   6
## 5 68     0   7
## 6 66     0   6
## Starting values: 
## 2.933 0.329 0.198 0.103 3
## initial loglik value: -193.8
## initial  value 193.795191 
## iter   2 value 193.795055
## iter   3 value 193.792028
## iter   4 value 193.783070
## iter   5 value 193.570209
## iter   6 value 193.568788
## iter   7 value 193.561353
## iter   8 value 193.560493
## iter   8 value 193.560493
## iter   8 value 193.560493
## final  value 193.560493 
## converged
## Convergence reached. Computing hessian...
## Loading required namespace: numDeriv
## ... done
## Loading required namespace: matrixcalc
## Loglikelihood: -193.56 
## Parameter estimates:
##             Estimate Std. error       z p.value
## (Intercept)   2.9326     0.1178 24.8874  0.0000
## group         0.3312     0.1334  2.4822  0.0131
## age           0.1976     0.0221  8.9236  0.0000
## group:age     0.1033     0.0238  4.3385  0.0000
## 
## Dispersion = 1.83 
## Power = 0
## Registered S3 method overwritten by 'DALEX':
##   method            from     
##   print.description questionr
##    satisfaction_level last_evaluation number_project average_montly_hours
## 1:               0.38            0.53              2                  157
## 2:               0.80            0.86              5                  262
## 3:               0.11            0.88              7                  272
## 4:               0.72            0.87              5                  223
## 5:               0.37            0.52              2                  159
## 6:               0.41            0.50              2                  153
##    time_spend_company Work_accident left promotion_last_5years sales
## 1:                  3             0    1                     0 sales
## 2:                  6             0    1                     0 sales
## 3:                  4             0    1                     0 sales
## 4:                  5             0    1                     0 sales
## 5:                  3             0    1                     0 sales
## 6:                  3             0    1                     0 sales
##    salary
## 1:    low
## 2: medium
## 3: medium
## 4:    low
## 5:    low
## 6:    low
## 6 x 19 sparse Matrix of class "dgCMatrix"
##    [[ suppressing 19 column names 'satisfaction_level', 'last_evaluation', 'number_project' ... ]]
##                                                
## 1 0.38 0.53 2 157 3 . . . . . . . . . 1 . . 1 .
## 2 0.80 0.86 5 262 6 . . . . . . . . . 1 . . . 1
## 3 0.11 0.88 7 272 4 . . . . . . . . . 1 . . . 1
## 4 0.72 0.87 5 223 5 . . . . . . . . . 1 . . 1 .
## 5 0.37 0.52 2 159 3 . . . . . . . . . 1 . . 1 .
## 6 0.41 0.50 2 153 3 . . . . . . . . . 1 . . 1 .
##    Tree Node  ID            Feature Split  Yes   No Missing      Quality
## 1:    0    0 0-0 satisfaction_level 0.465  0-1  0-2     0-1 3123.2509800
## 2:    0    1 0-1     number_project 2.500  0-3  0-4     0-3  892.9471440
## 3:    0    2 0-2 time_spend_company 4.500  0-5  0-6     0-5 1284.8271500
## 4:    0    3 0-3               Leaf    NA <NA> <NA>    <NA>    0.4536083
## 5:    0    4 0-4               Leaf    NA <NA> <NA>    <NA>   -0.1082209
## 6:    0    5 0-5               Leaf    NA <NA> <NA>    <NA>   -0.5823490
##      Cover
## 1: 3749.75
## 2: 1045.75
## 3: 2704.00
## 4:  435.50
## 5:  610.25
## 6: 2208.50
##                 Feature        Gain      Cover  Frequency
## 1:   satisfaction_level 0.439789879 0.34785700 0.32330827
## 2:   time_spend_company 0.222734548 0.17881869 0.16541353
## 3:       number_project 0.177174300 0.12337939 0.13533835
## 4: average_montly_hours 0.072518366 0.14989533 0.16541353
## 5:      last_evaluation 0.070729248 0.14119107 0.14285714
## 6:        Work_accident 0.009315458 0.02909931 0.03007519

##                Parent                Child   sumGain frequency
## 1: satisfaction_level       number_project 3573.8695         6
## 2: satisfaction_level   time_spend_company 3421.1675         5
## 3: satisfaction_level   satisfaction_level 1078.1480        10
## 4:    last_evaluation average_montly_hours  843.8720         4
## 5:    last_evaluation   satisfaction_level  826.7479         6
## 6:    last_evaluation   time_spend_company  651.9038         4

##                  Parent                Child  sumGain frequency
## 1:      last_evaluation average_montly_hours 745.5943         2
## 2:      last_evaluation   satisfaction_level 708.8723         4
## 3:      last_evaluation   time_spend_company 634.9984         3
## 4:   satisfaction_level   time_spend_company 559.9985         2
## 5:      last_evaluation       number_project 390.1898         1
## 6: average_montly_hours   time_spend_company 318.0142         2

##                                 Feature sumGain sumCover meanGain
## 1:                   satisfaction_level 10040.0    43920   264.10
## 2:                   time_spend_company  4016.0    19820   267.70
## 3:                       number_project  3706.0    13940   264.70
## 4:                      last_evaluation  1181.0    15340    90.81
## 5:                 average_montly_hours   886.0    18190    46.63
## 6: last_evaluation:average_montly_hours   745.6     1767   372.80
##    meanCover frequency mean5Gain
## 1:    1156.0        38    1513.0
## 2:    1321.0        15     670.4
## 3:     995.6        14     697.4
## 4:    1180.0        13     183.0
## 5:     957.6        19      97.5
## 6:     883.7         2     372.8

##                                                          contribution
## xgboost: intercept                                             -1.530
## xgboost: time_spend_company = 5                                 1.519
## xgboost: last_evaluation = 1                                    1.485
## xgboost: Work_accident = 0                                     -0.736
## xgboost: satisfaction_level:time_spend_company = 0.89:5         0.406
## xgboost: last_evaluation:time_spend_company = 1:5               0.316
## xgboost: number_project:last_evaluation = 5:1                   0.258
## xgboost: satisfaction_level = 0.89                             -0.238
## xgboost: last_evaluation:average_montly_hours = 1:224           0.227
## xgboost: number_project = 5                                    -0.224
## xgboost: salary = 2                                             0.166
## xgboost: average_montly_hours:last_evaluation = 224:1          -0.156
## xgboost: last_evaluation:satisfaction_level = 1:0.89            0.111
## xgboost: average_montly_hours:time_spend_company = 224:5        0.098
## xgboost: time_spend_company:last_evaluation = 5:1               0.095
## xgboost: average_montly_hours:number_project = 224:5            0.094
## xgboost: average_montly_hours = 224                            -0.048
## xgboost: satisfaction_level:number_project = 0.89:5            -0.003
## xgboost: prediction                                             1.839

2020-02-19