###Correlacion y regresion luneal de aerolianas ###Las librerias —

library(readr)
library(ggplot2)
library(stats)

###Cargar los datos

datos <- read_csv("C:/Users/memow/OneDrive/Escritorio/PracticasR/rutas_millas_tarifas_de_vuelos.csv")
## Parsed with column specification:
## cols(
##   ruta = col_character(),
##   millas = col_double(),
##   costo = col_double()
## )
str(datos)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 18 obs. of  3 variables:
##  $ ruta  : chr  "Dallas-Austin" "Houston-Dallas" "Chicago-Detroit" "Chicago-San Luis" ...
##  $ millas: num  178 232 238 262 301 ...
##  $ costo : num  125 123 148 136 129 162 224 264 287 256 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   ruta = col_character(),
##   ..   millas = col_double(),
##   ..   costo = col_double()
##   .. )
summary(datos)
##      ruta               millas         costo      
##  Length:18          Min.   : 178   Min.   :123.0  
##  Class :character   1st Qu.: 374   1st Qu.:151.5  
##  Mode  :character   Median :1048   Median :275.5  
##                     Mean   :1196   Mean   :280.7  
##                     3rd Qu.:1752   3rd Qu.:364.0  
##                     Max.   :2574   Max.   :513.0

####Ver el Coeficiente de Correlación con función cor()

CR <- cor(datos$millas, datos$costo)
CR 
## [1] 0.835779

Mediante la función cor() se genera el coeficiente de correlación entre dos o mas variables −0.90 = Correlación negativa muy fuerte. −0.75 = Correlación negativa considerable. −0.50 = Correlación negativa media. −0.25 = Correlación negativa débil. −0.10 = Correlación negativa muy débil. 0.00 = No existe correlación alguna entre las variables. +0.10 = Correlación positiva muy débil. +0.25 = Correlación positiva débil. +0.50 = Correlación positiva media. +0.75 = Correlación positiva considerable. +0.90 = Correlación positiva muy fuerte. +1.00 = Correlación positiva perfecta (“A mayor X, mayor Y” o “a menor X, menor Y”, de manera proporcional. Cada vez que X aumenta, Y aumenta siempre una cantidad constante).

###Modelo de regresión Variable independiente; millas; x Variable dependiente o respueta o; y predictiva *~ Significa determinar costo en función de las millas

modelo <- lm(costo ~ millas, datos)
modelo
## 
## Call:
## lm(formula = costo ~ millas, data = datos)
## 
## Coefficients:
## (Intercept)       millas  
##    128.5770       0.1272

###Valores de los coeficientes

a <- modelo$coefficients[1] 
b <- modelo$coefficients[2]
a; b
## (Intercept) 
##     128.577
##    millas 
## 0.1271535

####Visualizar el diagrama de dispersión

ggplot(datos, aes(millas, costo))   +   geom_point()