Part 1

(a) Create a vector of the positive odd integers less than 100. Remove the values greater than 60 and less than 80. Find the variance of the remaining set of values.

v <- 1:100
v <- v[v %% 2 != 0]
v
 [1]  1  3  5  7  9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
[33] 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
v <- v[v > 60]
v <- v[v < 80]
v
 [1] 61 63 65 67 69 71 73 75 77 79
variance <- var(v)
variance
[1] 36.66667

(b) What’s the difference in output between the commands 2*1:5 and (2*1):5? Why is there a difference?

2*1:5
[1]  2  4  6  8 10
(2*1):5
[1] 2 3 4 5

The first command is having a scalar be multiplied by a vector, which is 1:5. The second command is a vector with the left value being the product of 2*1, which is 2. The parentheses affected the order of operations.

(c) If you wanted to enter the odd numbers from 1 to 19 in the variable x, what command would you use?

x <- 2*(1:10)-1
x
 [1]  1  3  5  7  9 11 13 15 17 19

(d) If you create a variable using the following command y=c(-1, 2, -3, 4, -5), what command would put the positive values of y into the variable z?

y <- c(-1, 2, -3, 4, -5)
z <- y[y > 0]
z
[1] 2 4

(e) What R command would give you the 95th percentile for a chi-squared distribution with 10 degrees of freedom?

qchisq(0.95, 10)
[1] 18.30704

(f) Generate a vector of 1000 standard normal random variables using the command x=rnorm(1000). Use R to give a five number summary of your simulated data. What is the mean and variance of your x variable? Make and print a histogram for this data

x = rnorm(1000)

summary(x)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-3.54719 -0.71405 -0.08119 -0.02399  0.65335  3.08018 
var(x)
[1] 0.993529

The mean is -0.02399 and the variance is 0.993529.

hist(x)

Part 2

For Stock B: 6% return with prob. 0.7; −8% return with prob. 0.3. Calculate its mean value and sample standard deviation.

s_mean <- 0.06*0.7 + -0.08* 0.3
s_variance <- (0.06**2)*0.7 + ((-0.08)**2)*0.3

s_mean
[1] 0.018
s_std <- sqrt(s_variance)


s_std
[1] 0.06663332

Part 3

Stock C: 45.42% return with prob. 0.7; −100% return with prob. 0.3. Calculate its mean value and sample standard deviation.

s_mean <- 0.4542*0.7 + -1* 0.3
s_variance <- (0.4542**2)*0.7 + ((-1)**2)*0.3

s_mean
[1] 0.01794
s_std <- sqrt(s_variance)


s_std
[1] 0.6666396

Part 4

Let X be a Bernoulli random variable which is defined as X = 1 if we get a head with probability p and X = 0 if we get a tail with probability 1 − p. Calculate E(2X), var(3X + 4), cov(3X, 5) and cov(4X, 6X + 1000).

  • The expected value of a Bernoulli random variable is p. The variance of a Bernoulli random variable is p(1-p).

  • The expected value of 2X is E(X)*2, which is 2p.
  • Var(3X + 4) is equal to 3*Var(X), which is 3p*(1-p)
  • The covariance of any random variable with a constant is zero.
  • Cov(4X, 6X + 1000) is the same as Cov(4X, 6X), which is the same as 24*Cov(X, X), which is 24*Var(X), which is 24p*(1-p).

Part 5

Let X be a random variable whose mean value is 4 and variance is 5 and Y be a random variable whose mean value is 2 and variance is 10. Suppose cov(X, Y ) = 1, calculate the correlation between X and Y and var(X + Y ). If X and Y are independent, calculate var(X + Y ).

  • cov(X, Y) = 1
  • The standard deviation of X is sqrt(5) and the standard deviation of Y is sqrt(10). Therefore, the correlation between X and Y is 1 divided by the product of sqrt(5) and sqrt(10).
std_x <- sqrt(5)
std_y <- sqrt(10)

corr <- 1 / (std_x * std_y)

corr
[1] 0.1414214
  • Variance(X + Y) = Var(X) + Var(Y) + 2cov(X, Y)
  • Variance(X + Y) = 5 + 10 + 2*1 = 17

  • When X and Y are independent, then var(X + Y) = Var(X) + Var(Y)
  • Var(X + Y) = 5 + 10 = 15

Part 6

Prove cov(X, Y ) = cov(Y, X).

  • Cov(X, Y) = E(XY) - μxμy
  • Cov(Y, X) = E(YX) - μyμx
  • There is the commutative property for expected value, therefore these two expressions are the same thing.
LS0tCnRpdGxlOiAiVGltZXMgU2VyaWVzIEFuYWx5c2lzIEFzc2lnbm1lbnQgIzEgKEplcmUgWHUpIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIFBhcnQgMQoKIyMjIChhKSBDcmVhdGUgYSB2ZWN0b3Igb2YgdGhlIHBvc2l0aXZlIG9kZCBpbnRlZ2VycyBsZXNzIHRoYW4gMTAwLiBSZW1vdmUgdGhlIHZhbHVlcyBncmVhdGVyIHRoYW4gNjAgYW5kIGxlc3MgdGhhbiA4MC4gRmluZCB0aGUgdmFyaWFuY2Ugb2YgdGhlIHJlbWFpbmluZyBzZXQgb2YgdmFsdWVzLgoKCmBgYHtyfQp2IDwtIDE6MTAwCnYgPC0gdlt2ICUlIDIgIT0gMF0KdgpgYGAKCgpgYGB7cn0KdiA8LSB2W3YgPiA2MF0KdiA8LSB2W3YgPCA4MF0KdgpgYGAKCgpgYGB7cn0KdmFyaWFuY2UgPC0gdmFyKHYpCnZhcmlhbmNlCmBgYAoKCiMjIyAoYikgV2hhdCdzIHRoZSBkaWZmZXJlbmNlIGluIG91dHB1dCBiZXR3ZWVuIHRoZSBjb21tYW5kcyAyXCoxOjUgYW5kICgyXCoxKTo1PyBXaHkgaXMgdGhlcmUgYSBkaWZmZXJlbmNlPwoKYGBge3J9CjIqMTo1CmBgYAoKYGBge3J9CigyKjEpOjUKYGBgCgpUaGUgZmlyc3QgY29tbWFuZCBpcyBoYXZpbmcgYSBzY2FsYXIgYmUgbXVsdGlwbGllZCBieSBhIHZlY3Rvciwgd2hpY2ggaXMgMTo1LiBUaGUgc2Vjb25kIGNvbW1hbmQgaXMgYSB2ZWN0b3Igd2l0aCB0aGUgbGVmdCB2YWx1ZSBiZWluZyB0aGUgcHJvZHVjdCBvZiAyKjEsIHdoaWNoIGlzIDIuIFRoZSBwYXJlbnRoZXNlcyBhZmZlY3RlZCB0aGUgb3JkZXIgb2Ygb3BlcmF0aW9ucy4KCiMjIyAoYykgSWYgeW91IHdhbnRlZCB0byBlbnRlciB0aGUgb2RkIG51bWJlcnMgZnJvbSAxIHRvIDE5IGluIHRoZSB2YXJpYWJsZSB4LCB3aGF0IGNvbW1hbmQgd291bGQgeW91IHVzZT8KCmBgYHtyfQp4IDwtIDIqKDE6MTApLTEKeApgYGAKCiMjIyAoZCkgSWYgeW91IGNyZWF0ZSBhIHZhcmlhYmxlIHVzaW5nIHRoZSBmb2xsb3dpbmcgY29tbWFuZCB5PWMoLTEsIDIsIC0zLCA0LCAtNSksIHdoYXQgY29tbWFuZCB3b3VsZCBwdXQgdGhlIHBvc2l0aXZlIHZhbHVlcyBvZiB5IGludG8gdGhlIHZhcmlhYmxlIHo/CgoKYGBge3J9CnkgPC0gYygtMSwgMiwgLTMsIDQsIC01KQp6IDwtIHlbeSA+IDBdCnoKYGBgCgojIyMgKGUpIFdoYXQgUiBjb21tYW5kIHdvdWxkIGdpdmUgeW91IHRoZSA5NXRoIHBlcmNlbnRpbGUgZm9yIGEgY2hpLXNxdWFyZWQgZGlzdHJpYnV0aW9uIHdpdGggMTAgZGVncmVlcyBvZiBmcmVlZG9tPwoKYGBge3J9CnFjaGlzcSgwLjk1LCAxMCkKYGBgCgojIyMgKGYpIEdlbmVyYXRlIGEgdmVjdG9yIG9mIDEwMDAgc3RhbmRhcmQgbm9ybWFsIHJhbmRvbSB2YXJpYWJsZXMgdXNpbmcgdGhlIGNvbW1hbmQgeD1ybm9ybSgxMDAwKS4gVXNlIFIgdG8gZ2l2ZSBhIGZpdmUgbnVtYmVyIHN1bW1hcnkgb2YgeW91ciBzaW11bGF0ZWQgZGF0YS4gV2hhdCBpcyB0aGUgbWVhbiBhbmQgdmFyaWFuY2Ugb2YgeW91ciB4IHZhcmlhYmxlPyBNYWtlIGFuZCBwcmludCBhIGhpc3RvZ3JhbSBmb3IgdGhpcyBkYXRhCgpgYGB7cn0KeCA9IHJub3JtKDEwMDApCgpzdW1tYXJ5KHgpCnZhcih4KQpgYGAKVGhlIG1lYW4gaXMgKiotMC4wMjM5OSoqIGFuZCB0aGUgdmFyaWFuY2UgaXMgKiowLjk5MzUyOSoqLgoKYGBge3J9Cmhpc3QoeCkKYGBgCgojIFBhcnQgMgoKRm9yIFN0b2NrIEI6IDYlIHJldHVybiB3aXRoIHByb2IuIDAuNzsg4oiSOCUgcmV0dXJuIHdpdGggcHJvYi4gMC4zLiBDYWxjdWxhdGUgaXRzIG1lYW4KdmFsdWUgYW5kIHNhbXBsZSBzdGFuZGFyZCBkZXZpYXRpb24uCgpgYGB7cn0Kc19tZWFuIDwtIDAuMDYqMC43ICsgLTAuMDgqIDAuMwpzX3ZhcmlhbmNlIDwtICgwLjA2KioyKSowLjcgKyAoKC0wLjA4KSoqMikqMC4zCgpzX21lYW4KCnNfc3RkIDwtIHNxcnQoc192YXJpYW5jZSkKCgpzX3N0ZAoKCmBgYAoKCiMgUGFydCAzCgojIyMgU3RvY2sgQzogNDUuNDIlIHJldHVybiB3aXRoIHByb2IuIDAuNzsg4oiSMTAwJSByZXR1cm4gd2l0aCBwcm9iLiAwLjMuIENhbGN1bGF0ZSBpdHMgbWVhbiB2YWx1ZSBhbmQgc2FtcGxlIHN0YW5kYXJkIGRldmlhdGlvbi4KCmBgYHtyfQpzX21lYW4gPC0gMC40NTQyKjAuNyArIC0xKiAwLjMKc192YXJpYW5jZSA8LSAoMC40NTQyKioyKSowLjcgKyAoKC0xKSoqMikqMC4zCgpzX21lYW4KCnNfc3RkIDwtIHNxcnQoc192YXJpYW5jZSkKCgpzX3N0ZAoKCgpgYGAKCiMgUGFydCA0CgojIyMgTGV0IFggYmUgYSBCZXJub3VsbGkgcmFuZG9tIHZhcmlhYmxlIHdoaWNoIGlzIGRlZmluZWQgYXMgWCA9IDEgaWYgd2UgZ2V0IGEgaGVhZCB3aXRoIHByb2JhYmlsaXR5IHAgYW5kIFggPSAwIGlmIHdlIGdldCBhIHRhaWwgd2l0aCBwcm9iYWJpbGl0eSAxIOKIkiBwLiBDYWxjdWxhdGUgRSgyWCksIHZhcigzWCArIDQpLCBjb3YoM1gsIDUpIGFuZCBjb3YoNFgsIDZYICsgMTAwMCkuCgogLSBUaGUgZXhwZWN0ZWQgdmFsdWUgb2YgYSBCZXJub3VsbGkgcmFuZG9tIHZhcmlhYmxlIGlzICoqcCoqLiBUaGUgdmFyaWFuY2Ugb2YgYSBCZXJub3VsbGkgcmFuZG9tIHZhcmlhYmxlIGlzICoqcCgxLXApKiouCgogLSBUaGUgZXhwZWN0ZWQgdmFsdWUgb2YgMlggaXMgRShYKVwqMiwgd2hpY2ggaXMgKioycCoqLgogLSBWYXIoM1ggKyA0KSBpcyBlcXVhbCB0byAzXCpWYXIoWCksIHdoaWNoIGlzICoqM3BcKigxLXApKioKIC0gVGhlIGNvdmFyaWFuY2Ugb2YgYW55IHJhbmRvbSB2YXJpYWJsZSB3aXRoIGEgY29uc3RhbnQgaXMgKip6ZXJvKiouCiAtIENvdig0WCwgNlggKyAxMDAwKSBpcyB0aGUgc2FtZSBhcyBDb3YoNFgsIDZYKSwgd2hpY2ggaXMgdGhlIHNhbWUgYXMgMjRcKkNvdihYLCBYKSwgd2hpY2ggaXMgMjRcKlZhcihYKSwgd2hpY2ggaXMgKioyNHBcKigxLXApKiouCgoKIyBQYXJ0IDUKCiMjIyBMZXQgWCBiZSBhIHJhbmRvbSB2YXJpYWJsZSB3aG9zZSBtZWFuIHZhbHVlIGlzIDQgYW5kIHZhcmlhbmNlIGlzIDUgYW5kIFkgYmUgYSByYW5kb20gdmFyaWFibGUgd2hvc2UgbWVhbiB2YWx1ZSBpcyAyIGFuZCB2YXJpYW5jZSBpcyAxMC4gU3VwcG9zZSBjb3YoWCwgWSApID0gMSwgY2FsY3VsYXRlIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIFggYW5kIFkgYW5kIHZhcihYICsgWSApLiBJZiBYIGFuZCBZIGFyZSBpbmRlcGVuZGVudCwgY2FsY3VsYXRlIHZhcihYICsgWSApLgoKIC0gY292KFgsIFkpID0gMQogLSBUaGUgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIFggaXMgc3FydCg1KSBhbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBZIGlzIHNxcnQoMTApLiBUaGVyZWZvcmUsIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIFggYW5kIFkgaXMgMSBkaXZpZGVkIGJ5IHRoZSBwcm9kdWN0IG9mIHNxcnQoNSkgYW5kIHNxcnQoMTApLgogCmBgYHtyfQpzdGRfeCA8LSBzcXJ0KDUpCnN0ZF95IDwtIHNxcnQoMTApCgpjb3JyIDwtIDEgLyAoc3RkX3ggKiBzdGRfeSkKCmNvcnIKYGBgCiAKIC0gVmFyaWFuY2UoWCArIFkpID0gVmFyKFgpICsgVmFyKFkpICsgMmNvdihYLCBZKQogLSBWYXJpYW5jZShYICsgWSkgPSA1ICsgMTAgKyAyXCoxID0gKioxNyoqCiAKIAogLSBXaGVuIFggYW5kIFkgYXJlIGluZGVwZW5kZW50LCB0aGVuIHZhcihYICsgWSkgPSBWYXIoWCkgKyBWYXIoWSkKICAtIFZhcihYICsgWSkgPSA1ICsgMTAgPSAqKjE1KioKICAKICAKICAKIyBQYXJ0IDYgCgojIyBQcm92ZSBjb3YoWCwgWSApID0gY292KFksIFgpLgoKIC0gQ292KFgsIFkpID0gRShYWSkgLSDOvHjOvHkKIC0gQ292KFksIFgpID0gRShZWCkgLSDOvHnOvHgKIC0gVGhlcmUgaXMgdGhlIGNvbW11dGF0aXZlIHByb3BlcnR5IGZvciBleHBlY3RlZCB2YWx1ZSwgdGhlcmVmb3JlIHRoZXNlIHR3byBleHByZXNzaW9ucyBhcmUgdGhlIHNhbWUgdGhpbmcuCgoKCgoKCg==