library(tidyverse)
library(here)
library(janitor)
library(patchwork)
library(papaja)
library(beepr)
Students in group1 were told that BabyA is preterm and BabyB is fullterm; students in group 2 were told that BabyA is fullterm and BabyB is preterm.
Both BabyA and BabyB were actually full term.
# fine motor
fineA <- read_csv(here("smartsparrow", "motor_data", "data2019", "fine_A_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 1", condition = "fine", assignment = "A_pre_B_full")
fineB <- read_csv(here("smartsparrow", "motor_data", "data2019", "fine_B_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 2", condition = "fine", assignment = "A_full_B_pre")
# add id using nrow
fineA$id <- 1:nrow(fineA)
# add id manually to make it start at the end of fineA
fineB$id <- 216:414
# pull id to the front
fine_motor <- rbind(fineA, fineB) %>%
select(id, everything())
# gross motor
grossA <- read_csv(here("smartsparrow", "motor_data", "data2019", "gross_A_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 1", condition = "gross", assignment = "A_pre_B_full")
grossB <- read_csv(here("smartsparrow", "motor_data", "data2019", "gross_B_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 2", condition = "gross", assignment = "A_full_B_pre")
# add id using nrow
grossA$id <- 1:nrow(grossA)
# add id manually to make it start at the end of fineA
grossB$id <- 216:416
gross_motor <- rbind(grossA, grossB) %>%
select(id, everything())
# play
playA <- read_csv(here("smartsparrow", "motor_data", "data2019", "play_A_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 1", condition = "play", assignment = "A_pre_B_full")
playB <- read_csv(here("smartsparrow", "motor_data", "data2019", "play_B_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 2", condition = "play", assignment = "A_full_B_pre")
# add id using nrow
playA$id <- 1:nrow(playA)
# add id manually to make it start at the end of fineA
playB$id <- 226:437
play_motor <- rbind(playA, playB) %>%
select(-a_duplo_apart, -b_duplo_apart) %>%
select(id, everything()) # drop extra duplo, it makes the pivot complicated
# self
selfA <- read_csv(here("smartsparrow", "motor_data", "data2019", "self_A_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 1", condition = "self", assignment = "A_pre_B_full")
selfB <- read_csv(here("smartsparrow", "motor_data", "data2019", "self_B_2019.csv")) %>%
clean_names() %>%
select(starts_with("A"), starts_with("B")) %>%
mutate(group = "group 2", condition = "self", assignment = "A_full_B_pre")
# add id using nrow
selfA$id <- 1:nrow(selfA)
# add id manually to make it start at the end of fineA
selfB$id <- 211:411
self_motor <- rbind(selfA, selfB) %>%
select(id, everything())
fine_plot <- fine_motor %>%
pivot_longer(names_to = c("infant", "task"), names_sep = "_", values_to = "rating", 2:5)
gross_plot <- gross_motor %>%
pivot_longer(names_to = c("infant", "task"), names_sep = "_", values_to = "rating", 2:5)
## Warning: Expected 2 pieces. Additional pieces discarded in 4 rows [1, 2, 3,
## 4].
play_plot <- play_motor %>%
pivot_longer(names_to = c("infant", "task"), names_sep = "_", values_to = "rating", 2:7)
## Warning: Expected 2 pieces. Additional pieces discarded in 4 rows [1, 2, 4,
## 6].
self_plot <- self_motor %>%
pivot_longer(names_to = c("infant", "task"), names_sep = "_", values_to = "rating", 2:5)
## Warning: Expected 2 pieces. Additional pieces discarded in 2 rows [2, 4].
fine_plot$infant <- factor(fine_plot$infant, levels = c("a", "b"),
labels = c("BabyA", "BabyB"))
gross_plot$infant <- factor(gross_plot$infant, levels = c("a", "b"),
labels = c("BabyA", "BabyB"))
play_plot$infant <- factor(play_plot$infant, levels = c("a", "b"),
labels = c("BabyA", "BabyB"))
self_plot$infant <- factor(self_plot$infant, levels = c("a", "b"),
labels = c("BabyA", "BabyB"))
fine_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE))
## # A tibble: 4 x 3
## # Groups: group [2]
## group infant mean
## <chr> <fct> <dbl>
## 1 group 1 BabyA 3.03
## 2 group 1 BabyB 2.48
## 3 group 2 BabyA 3.27
## 4 group 2 BabyB 2.39
gross_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE))
## # A tibble: 4 x 3
## # Groups: group [2]
## group infant mean
## <chr> <fct> <dbl>
## 1 group 1 BabyA 3.19
## 2 group 1 BabyB 3.70
## 3 group 2 BabyA 3.43
## 4 group 2 BabyB 3.55
play_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE))
## # A tibble: 4 x 3
## # Groups: group [2]
## group infant mean
## <chr> <fct> <dbl>
## 1 group 1 BabyA 2.56
## 2 group 1 BabyB 3.69
## 3 group 2 BabyA 2.91
## 4 group 2 BabyB 3.47
self_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE))
## # A tibble: 4 x 3
## # Groups: group [2]
## group infant mean
## <chr> <fct> <dbl>
## 1 group 1 BabyA 2.89
## 2 group 1 BabyB 3.81
## 3 group 2 BabyA 3.32
## 4 group 2 BabyB 3.61
fplot <- fine_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE)) %>%
ggplot(aes(x = group, y = mean, fill = group)) +
geom_col() +
facet_wrap(~ infant) +
labs(subtitle = "fine motor ratings") +
theme(legend.position = "none") +
scale_y_continuous(expand = c(0, 0), limits = c(0, 4))
gplot <- gross_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE)) %>%
ggplot(aes(x = group, y = mean, fill = group)) +
geom_col() +
facet_wrap(~ infant) +
labs(subtitle = "gross motor ratings") +
theme(legend.position = "none") +
scale_y_continuous(expand = c(0, 0), limits = c(0, 4))
#combine fplot and gplot
patchplot1 <- fplot + gplot +
plot_annotation(
title = "group1 thought BabyA was preterm \ngroup2 thought BabyB was preterm")
#save as png
ggsave(here("smartsparrow", "plots", "patchplot1.png"))
## Saving 7 x 5 in image
pplot <- play_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE)) %>%
ggplot(aes(x = group, y = mean, fill = group)) +
geom_col() +
facet_wrap(~ infant) +
labs(subtitle = "play ratings") +
theme(legend.position = "none") +
scale_y_continuous(expand = c(0, 0), limits = c(0, 4))
splot <- self_plot %>%
group_by(group, infant) %>%
summarise(mean = mean(rating, na.rm = TRUE)) %>%
ggplot(aes(x = group, y = mean, fill = group)) +
geom_col() +
facet_wrap(~ infant) +
labs(subtitle = "self help ratings") +
theme(legend.position = "none") +
scale_y_continuous(expand = c(0, 0), limits = c(0, 4))
#combine pplot and splot
patchplot2 <- pplot + splot +
plot_annotation(
title = "group1 thought BabyA was preterm \ngroup2 thought BabyB was preterm")
# save as png
ggsave(here("smartsparrow", "plots", "patchplot2.png"))
## Saving 7 x 5 in image