rm(list = ls())
setwd("c:/users/Paul/Documents/Rwork")
getwd()
## [1] "c:/users/Paul/Documents/Rwork"
library(readr)
library(qqplotr)
## Warning: package 'qqplotr' was built under R version 3.5.3
## Loading required package: ggplot2
## 
## Attaching package: 'qqplotr'
## The following objects are masked from 'package:ggplot2':
## 
##     stat_qq_line, StatQqLine
library(lavaan)
## This is lavaan 0.6-3
## lavaan is BETA software! Please report any bugs.
library(car)
## Warning: package 'car' was built under R version 3.5.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.5.2
library(carData)
#Load the mineralizationdata
mineralizationdata<- read.csv(file="mineralizationdata2.csv")
attach(mineralizationdata)
head(mineralizationdata)
##       Site Deer.Trt Honeysuckle  Week CtotalN TrttotalN sqrCtotalN
## 1 Bachelor     Excl          H  week0    1.28      1.28       1.13
## 2  College     Excl          H  week0    3.07      3.07       1.75
## 3   Kramer     Excl          H  week0    3.80      3.80       1.95
## 4 Reinhert     Excl          H  week0    1.69      1.69       1.30
## 5  Western     Excl          H  week0    1.55      1.55       1.24
## 6 Bachelor     Excl          NH week0    1.50      1.50       1.22
##   sqrTrttotalN ConNO3 TrtNO3 Dmin Dnitr Con...NO3 Trt..NO3 Dmin.1 sqDmin
## 1         1.13   0.21   0.21    0     0     16.42    16.42      0      0
## 2         1.75   1.15   1.15    0     0     37.37    37.37      0      0
## 3         1.95   0.33   0.33    0     0      8.68     8.68      0      0
## 4         1.30   0.37   0.37    0     0     21.82    21.82      0      0
## 5         1.24   0.13   0.13    0     0      8.65     8.65      0      0
## 6         1.22   0.41   0.41    0     0     27.40    27.40      0      0
##   sqDnitri lgDmin lgDnitri
## 1        0     NA       NA
## 2        0     NA       NA
## 3        0     NA       NA
## 4        0     NA       NA
## 5        0     NA       NA
## 6        0     NA       NA
#t.test(Dmin)
#t.test(Dnitr)
#ggplot for Dmin
library(ggplot2)
ggplot(mineralizationdata, aes(x = sqDnitri, y = sqDmin, color = Week, shape=Honeysuckle)) +
  geom_point()

#Run a lm on sqrCtotalN and sqrTrttoalN and check normality for the residuals
#Modeling the difference in mineralization
mineralizationdata<- read.csv(file="mineralizationdata.csv")
modelDmin<-lm(sqDmin~Week,data=mineralizationdata)
modelDmin2<-lm(sqDmin~Week*Honeysuckle,data=mineralizationdata)
summary(modelDmin)
## 
## Call:
## lm(formula = sqDmin ~ Week, data = mineralizationdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -429.44  -92.57   -6.78   55.82 1345.59 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 5.584e-14  8.611e+01   0.000 1.000000    
## Weekweek12  2.429e+02  1.218e+02   1.994 0.049906 *  
## Weekweek16  3.996e+02  1.218e+02   3.281 0.001594 ** 
## Weekweek2   1.540e+01  1.218e+02   0.126 0.899707    
## Weekweek20  3.269e+02  1.218e+02   2.684 0.009020 ** 
## Weekweek24  4.303e+02  1.218e+02   3.533 0.000721 ***
## Weekweek4   8.495e+01  1.218e+02   0.698 0.487659    
## Weekweek8   9.301e+01  1.218e+02   0.764 0.447481    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 272.3 on 72 degrees of freedom
## Multiple R-squared:  0.2819, Adjusted R-squared:  0.2121 
## F-statistic: 4.038 on 7 and 72 DF,  p-value: 0.0008795
summary(modelDmin2)
## 
## Call:
## lm(formula = sqDmin ~ Week * Honeysuckle, data = mineralizationdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -498.29 -120.18   -3.49   56.45 1276.56 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               1.225e-13  1.275e+02   0.000  1.00000   
## Weekweek12                2.974e+02  1.802e+02   1.650  0.10383   
## Weekweek16                4.647e+02  1.802e+02   2.578  0.01224 * 
## Weekweek2                 1.625e+01  1.802e+02   0.090  0.92845   
## Weekweek20                3.393e+02  1.802e+02   1.883  0.06429 . 
## Weekweek24                4.993e+02  1.802e+02   2.770  0.00732 **
## Weekweek4                 1.008e+02  1.802e+02   0.559  0.57791   
## Weekweek8                 1.339e+02  1.802e+02   0.743  0.46023   
## HoneysuckleNH            -1.116e-13  1.802e+02   0.000  1.00000   
## Weekweek12:HoneysuckleNH -1.091e+02  2.549e+02  -0.428  0.67007   
## Weekweek16:HoneysuckleNH -1.302e+02  2.549e+02  -0.511  0.61126   
## Weekweek2:HoneysuckleNH  -1.696e+00  2.549e+02  -0.007  0.99471   
## Weekweek20:HoneysuckleNH -2.497e+01  2.549e+02  -0.098  0.92228   
## Weekweek24:HoneysuckleNH -1.381e+02  2.549e+02  -0.542  0.58996   
## Weekweek4:HoneysuckleNH  -3.171e+01  2.549e+02  -0.124  0.90138   
## Weekweek8:HoneysuckleNH  -8.180e+01  2.549e+02  -0.321  0.74933   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 285 on 64 degrees of freedom
## Multiple R-squared:  0.3008, Adjusted R-squared:  0.1369 
## F-statistic: 1.836 on 15 and 64 DF,  p-value: 0.04849
anova(modelDmin)
## Analysis of Variance Table
## 
## Response: sqDmin
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Week       7 2095634  299376  4.0375 0.0008795 ***
## Residuals 72 5338719   74149                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modelDmin2)
## Analysis of Variance Table
## 
## Response: sqDmin
##                  Df  Sum Sq Mean Sq F value   Pr(>F)   
## Week              7 2095634  299376  3.6860 0.002089 **
## Honeysuckle       1   83703   83703  1.0306 0.313849   
## Week:Honeysuckle  7   56897    8128  0.1001 0.998148   
## Residuals        64 5198119   81221                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
residDmin<-resid(modelDmin)
residDmin2<-resid(modelDmin2)
plot(residDmin)

hist(residDmin)

plot(residDmin2)

hist(residDmin2)

anova(modelDmin,modelDmin2)
## Analysis of Variance Table
## 
## Model 1: sqDmin ~ Week
## Model 2: sqDmin ~ Week * Honeysuckle
##   Res.Df     RSS Df Sum of Sq      F Pr(>F)
## 1     72 5338719                           
## 2     64 5198119  8    140600 0.2164 0.9869
modelDminaov <- aov(sqDmin~Week*Honeysuckle,data=mineralizationdata)
posthoc3 <- TukeyHSD(x=modelDminaov, 'Week', conf.level=0.95)
posthoc3
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = sqDmin ~ Week * Honeysuckle, data = mineralizationdata)
## 
## $Week
##                   diff         lwr       upr     p adj
## week12-week0   242.862 -156.492828 642.21683 0.5523489
## week16-week0   399.608    0.253172 798.96283 0.0497420
## week2-week0     15.402 -383.952828 414.75683 1.0000000
## week20-week0   326.857  -72.497828 726.21183 0.1883147
## week24-week0   430.301   30.946172 829.65583 0.0259246
## week4-week0     84.955 -314.399828 484.30983 0.9975832
## week8-week0     93.014 -306.340828 492.36883 0.9957422
## week16-week12  156.746 -242.608828 556.10083 0.9198897
## week2-week12  -227.460 -626.814828 171.89483 0.6324589
## week20-week12   83.995 -315.359828 483.34983 0.9977506
## week24-week12  187.439 -211.915828 586.79383 0.8198354
## week4-week12  -157.907 -557.261828 241.44783 0.9169581
## week8-week12  -149.848 -549.202828 249.50683 0.9359276
## week2-week16  -384.206 -783.560828  15.14883 0.0677032
## week20-week16  -72.751 -472.105828 326.60383 0.9991049
## week24-week16   30.693 -368.661828 430.04783 0.9999974
## week4-week16  -314.653 -714.007828  84.70183 0.2276424
## week8-week16  -306.594 -705.948828  92.76083 0.2565080
## week20-week2   311.455  -87.899828 710.80983 0.2388216
## week24-week2   414.899   15.544172 814.25383 0.0361680
## week4-week2     69.553 -329.801828 468.90783 0.9993320
## week8-week2     77.612 -321.742828 476.96683 0.9986409
## week24-week20  103.444 -295.910828 502.79883 0.9918631
## week4-week20  -241.902 -641.256828 157.45283 0.5573564
## week8-week20  -233.843 -633.197828 165.51183 0.5993896
## week4-week24  -345.346 -744.700828  54.00883 0.1385490
## week8-week24  -337.287 -736.641828  62.06783 0.1588273
## week8-week4      8.059 -391.295828 407.41383 1.0000000
plot(modelDminaov)

#Modeling the difference in nitrification
mineralizationdata<- read.csv(file="mineralizationdata.csv")
modelDnitr<-lm(sqDnitri~Week,data=mineralizationdata)
modelDnitr2<-lm(sqDnitri~Week*Honeysuckle,data=mineralizationdata)
summary(modelDnitr)
## 
## Call:
## lm(formula = sqDnitri ~ Week, data = mineralizationdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -428.76  -94.33   -7.11   58.24 1347.10 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.867e-14  8.598e+01   0.000 1.000000    
## Weekweek12  2.418e+02  1.216e+02   1.988 0.050588 .  
## Weekweek16  3.979e+02  1.216e+02   3.272 0.001641 ** 
## Weekweek2   1.585e+01  1.216e+02   0.130 0.896676    
## Weekweek20  3.235e+02  1.216e+02   2.661 0.009607 ** 
## Weekweek24  4.295e+02  1.216e+02   3.532 0.000723 ***
## Weekweek4   8.290e+01  1.216e+02   0.682 0.497549    
## Weekweek8   9.478e+01  1.216e+02   0.779 0.438244    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 271.9 on 72 degrees of freedom
## Multiple R-squared:  0.2805, Adjusted R-squared:  0.2106 
## F-statistic:  4.01 on 7 and 72 DF,  p-value: 0.0009321
summary(modelDnitr2)
## 
## Call:
## lm(formula = sqDnitri ~ Week * Honeysuckle, data = mineralizationdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -498.97 -119.41   -3.74   58.24 1276.71 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               1.192e-13  1.272e+02   0.000  1.00000   
## Weekweek12                2.963e+02  1.799e+02   1.647  0.10447   
## Weekweek16                4.652e+02  1.799e+02   2.586  0.01201 * 
## Weekweek2                 1.710e+01  1.799e+02   0.095  0.92458   
## Weekweek20                3.335e+02  1.799e+02   1.854  0.06841 . 
## Weekweek24                4.999e+02  1.799e+02   2.779  0.00716 **
## Weekweek4                 9.688e+01  1.799e+02   0.538  0.59212   
## Weekweek8                 1.347e+02  1.799e+02   0.749  0.45671   
## HoneysuckleNH            -9.940e-14  1.799e+02   0.000  1.00000   
## Weekweek12:HoneysuckleNH -1.091e+02  2.544e+02  -0.429  0.66951   
## Weekweek16:HoneysuckleNH -1.347e+02  2.544e+02  -0.529  0.59847   
## Weekweek2:HoneysuckleNH  -2.504e+00  2.544e+02  -0.010  0.99218   
## Weekweek20:HoneysuckleNH -1.992e+01  2.544e+02  -0.078  0.93784   
## Weekweek24:HoneysuckleNH -1.408e+02  2.544e+02  -0.553  0.58199   
## Weekweek4:HoneysuckleNH  -2.795e+01  2.544e+02  -0.110  0.91288   
## Weekweek8:HoneysuckleNH  -7.988e+01  2.544e+02  -0.314  0.75458   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 284.5 on 64 degrees of freedom
## Multiple R-squared:  0.2999, Adjusted R-squared:  0.1358 
## F-statistic: 1.828 on 15 and 64 DF,  p-value: 0.04966
anova(modelDnitr)
## Analysis of Variance Table
## 
## Response: sqDnitri
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Week       7 2075024  296432    4.01 0.0009321 ***
## Residuals 72 5322451   73923                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modelDnitr2)
## Analysis of Variance Table
## 
## Response: sqDnitri
##                  Df  Sum Sq Mean Sq F value   Pr(>F)   
## Week              7 2075024  296432  3.6633 0.002189 **
## Honeysuckle       1   82815   82815  1.0234 0.315521   
## Week:Honeysuckle  7   60733    8676  0.1072 0.997691   
## Residuals        64 5178904   80920                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
residDnitr<-resid(modelDnitr)
residDnitr2<-resid(modelDnitr2)
plot(residDnitr)

hist(residDnitr)

plot(residDnitr2)

hist(residDnitr2)

anova(modelDnitr,modelDnitr2)
## Analysis of Variance Table
## 
## Model 1: sqDnitri ~ Week
## Model 2: sqDnitri ~ Week * Honeysuckle
##   Res.Df     RSS Df Sum of Sq      F Pr(>F)
## 1     72 5322451                           
## 2     64 5178904  8    143547 0.2217 0.9858
modelDnitriaov <- aov(sqDnitri~Week*Honeysuckle,data=mineralizationdata)
posthoc5 <- TukeyHSD(x=modelDnitriaov, 'Week', conf.level=0.95)
posthoc5
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = sqDnitri ~ Week * Honeysuckle, data = mineralizationdata)
## 
## $Week
##                   diff          lwr       upr     p adj
## week12-week0   241.753 -156.8630124 640.36901 0.5557961
## week16-week0   397.860   -0.7560124 796.47601 0.0507787
## week2-week0     15.846 -382.7700124 414.46201 1.0000000
## week20-week0   323.522  -75.0940124 722.13801 0.1966720
## week24-week0   429.523   30.9069876 828.13901 0.0259142
## week4-week0     82.902 -315.7140124 481.51801 0.9979053
## week8-week0     94.780 -303.8360124 493.39601 0.9951638
## week16-week12  156.107 -242.5090124 554.72301 0.9207594
## week2-week12  -225.907 -624.5230124 172.70901 0.6382942
## week20-week12   81.769 -316.8470124 480.38501 0.9980805
## week24-week12  187.770 -210.8460124 586.38601 0.8171146
## week4-week12  -158.851 -557.4670124 239.76501 0.9137564
## week8-week12  -146.973 -545.5890124 251.64301 0.9413752
## week2-week16  -382.014 -780.6300124  16.60201 0.0696955
## week20-week16  -74.338 -472.9540124 324.27801 0.9989581
## week24-week16   31.663 -366.9530124 430.27901 0.9999967
## week4-week16  -314.958 -713.5740124  83.65801 0.2246001
## week8-week16  -303.080 -701.6960124  95.53601 0.2676553
## week20-week2   307.676  -90.9400124 706.29201 0.2504028
## week24-week2   413.677   15.0609876 812.29301 0.0365192
## week4-week2     67.056 -331.5600124 465.67201 0.9994678
## week8-week2     78.934 -319.6820124 477.55001 0.9984674
## week24-week20  106.001 -292.6150124 504.61701 0.9904802
## week4-week20  -240.620 -639.2360124 157.99601 0.5617188
## week8-week20  -228.742 -627.3580124 169.87401 0.6236557
## week4-week24  -346.621 -745.2370124  51.99501 0.1340344
## week8-week24  -334.743 -733.3590124  63.87301 0.1639860
## week8-week4     11.878 -386.7380124 410.49401 1.0000000
plot(modelDnitriaov)