The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
# use this chunk to answer question 1
library(lme4)
## Loading required package: Matrix
fit1 = lmer(resp2 ~ elevation + slope + (1|stand))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
##
## REML criterion at convergence: 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.65583 -0.62467 -0.01693 0.53669 1.41736
##
## Random effects:
## Groups Name Variance Std.Dev.
## stand (Intercept) 1.208 1.099
## Residual 1.358 1.165
## Number of obs: 20, groups: stand, 5
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -21.314628 6.602053 -3.228
## elevation 0.020600 0.004916 4.190
## slope 0.095105 0.016441 5.785
##
## Correlation of Fixed Effects:
## (Intr) elevtn
## elevation -0.991
## slope 0.049 -0.148
# use this chunk to answer question 2
aaa_fun = function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep(rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand * nplot, 0, sd)
elevation = rep(runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand * nplot, 2, 75)
resp2 = b0 + b1 * elevation + b2 * slope + standeff + ploteff
dat = data.frame(resp2, elevation, slope, stand)
lmer(resp2 ~ elevation + slope + (1|stand), data = dat)
}
aaa_fun()
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
## Data: dat
## REML criterion at convergence: 80.9781
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 2.3573
## Residual 0.9754
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## 10.584601 -0.005464 0.086839
result = replicate(n = 1000, expr = aaa_fun())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
length(result)
## [1] 1000
# use this chunk to answer question 3
library(tidyverse)
## -- Attaching packages -------------------------------- tidyverse 1.3.0 --
## √ ggplot2 3.2.1 √ purrr 0.3.3
## √ tibble 2.1.3 √ dplyr 0.8.4
## √ tidyr 1.0.2 √ stringr 1.4.0
## √ readr 1.3.1 √ forcats 0.4.0
## -- Conflicts ----------------------------------- tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
library(broom)
variances <- result %>%
map_dfr(tidy, effects = "ran_pars", scales = "vcov")
variances %>% print(n = 6)
## # A tibble: 2,000 x 3
## term group estimate
## <chr> <chr> <dbl>
## 1 var_(Intercept).stand stand 2.61
## 2 var_Observation.Residual Residual 1.11
## 3 var_(Intercept).stand stand 9.73
## 4 var_Observation.Residual Residual 1.36
## 5 var_(Intercept).stand stand 0.827
## 6 var_Observation.Residual Residual 0.914
## # ... with 1,994 more rows
# use this chunk to answer question 4
library(ggplot2)
library(tidyverse)
smis3groups <- c(5, 25, 200) %>%
set_names(c("sample_size = 5","sample_size = 25", "sample_size = 200" )) %>%
map(~replicate(1000, aaa_fun(nstand = .x) ) )
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
variances3groups <- smis3groups %>%
modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov") ) %>%
map_dfr(bind_rows, .id = "stand_num") %>%
filter(group == "stand")
head(variances3groups)
## # A tibble: 6 x 4
## stand_num term group estimate
## <chr> <chr> <chr> <dbl>
## 1 sample_size = 5 var_(Intercept).stand stand 12.0
## 2 sample_size = 5 var_(Intercept).stand stand 6.84
## 3 sample_size = 5 var_(Intercept).stand stand 2.89
## 4 sample_size = 5 var_(Intercept).stand stand 2.52
## 5 sample_size = 5 var_(Intercept).stand stand 0.966
## 6 sample_size = 5 var_(Intercept).stand stand 2.91
ggplot(variances3groups, aes(x = estimate) ) +
geom_density(fill = "red", alpha = .25) +
facet_wrap(~stand_num) +
geom_vline(xintercept = 4)
# use this chunk to answer question 5