This is an R Markdown Notebook.

psychologist <- trendy("psychologist")
psychologist %>% 
  get_interest() %>% 
  ggplot(aes(x = date, y = hits)) +
  geom_line() +
  theme_minimal() +
  labs(x = "Date", y = "Total Searches", title = "Google Searches for 'Psychologist' Over Time")

There’s a strong seasonal trend and a yearly increase in the number of searches.

psychologist %>% 
  get_interest() %>% 
  mutate(month = month(date)) %>% 
  group_by(month) %>% 
  summarize(hits_per_month = mean(hits)) %>% 
  ggplot(aes(x = month, y = hits_per_month)) +
  theme_minimal() +
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
  labs(x = "Month", y = "Total Searches", title = "Google Searches for 'Psychologist', by Month")

No one is sad in July and August, because it’s Leo Season. And no one cares aboout fiinding a psychologist in December, apparently. Huge spike aaround “New Year, New Me” time and Scorpio Season.

psychologist %>% 
  get_interest_dma() %>%
  datatable()

Mankato has a really big psychology department. https://sbs.mnsu.edu/academics/psychology/

psychologist_countries <- trendy("psychologist", geo = c("US", "CA"))
psychologist_countries %>% 
  get_interest() %>% 
  mutate(month = month(date)) %>% 
  group_by(month, geo) %>%
  summarize(hits_per_month = mean(hits)) %>% 
  ggplot(aes(x = month, y = hits_per_month, color = geo)) +
  geom_line() +
  scale_x_discrete(limit = c(1:12)) +
  theme_classic() +
  scale_color_manual(values=c('green','red')) +
  labs(x = "Month", y = "Total Searches", title = "Google Searches in CA vs US for 'Psychologist' by Month", color = "Country")

Canadian people are just as sad–the graphs are basically on top of each other.

psychologist_psychiatrist <- trendy(c("psychologist", "psychiatrist"))
psychologist_psychiatrist %>% 
  get_interest() %>% 
  ggplot(aes(x = date, y = hits, color = keyword)) +
  geom_line() +
  theme_classic() +
  scale_color_manual(values=c('green','red')) +
  labs(x = "Date", y = "Total Searches", title = "Google Searches for 'Psychologist' vs 'Psychiatrist' Over Time", color = "Search Term")

In general, “psychiatrist” is a much less-searched term, but it follows the same trend as “psychologist,” almost too well. (But “psychologist” is much more drastic.)

psych_images <- trendy(c("psychologist", "psychiatrist"), gprop = "images")
psych_images %>% 
  get_interest() %>% 
  ggplot(aes(x = date, y = hits, color = keyword)) +
  geom_line() +
  theme_classic() +
  scale_color_manual(values=c('green','red')) +
  labs(x = "Date", 
       y = "Total Image Searches", 
       color = "Search term", 
       title = "Google Image Searches for 'Psychologist' and 'Psychiatrist' Over Time")

Why…why are people looking up pictures of a psychiatrist or psychologist to begin with, and why is it becoming a more popular search over time? Is this a fetish thing?

LS0tCnRpdGxlOiAiVHJlbmR5eSBBIFByYXR0IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gCgpgYGB7cn0KcHN5Y2hvbG9naXN0IDwtIHRyZW5keSgicHN5Y2hvbG9naXN0IikKCmBgYAoKYGBge3J9CnBzeWNob2xvZ2lzdCAlPiUgCiAgZ2V0X2ludGVyZXN0KCkgJT4lIAogIGdncGxvdChhZXMoeCA9IGRhdGUsIHkgPSBoaXRzKSkgKwogIGdlb21fbGluZSgpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnMoeCA9ICJEYXRlIiwgeSA9ICJUb3RhbCBTZWFyY2hlcyIsIHRpdGxlID0gIkdvb2dsZSBTZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcgT3ZlciBUaW1lIikKYGBgCgpUaGVyZSdzIGEgc3Ryb25nIHNlYXNvbmFsIHRyZW5kIGFuZCBhIHllYXJseSBpbmNyZWFzZSBpbiB0aGUgbnVtYmVyIG9mIHNlYXJjaGVzLiAKCmBgYHtyfQpwc3ljaG9sb2dpc3QgJT4lIAogIGdldF9pbnRlcmVzdCgpICU+JSAKICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lIAogIGdyb3VwX2J5KG1vbnRoKSAlPiUgCiAgc3VtbWFyaXplKGhpdHNfcGVyX21vbnRoID0gbWVhbihoaXRzKSkgJT4lIAogIGdncGxvdChhZXMoeCA9IG1vbnRoLCB5ID0gaGl0c19wZXJfbW9udGgpKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBnZW9tX2xpbmUoKSArCiAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKDE6MTIpKSArCiAgbGFicyh4ID0gIk1vbnRoIiwgeSA9ICJUb3RhbCBTZWFyY2hlcyIsIHRpdGxlID0gIkdvb2dsZSBTZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcsIGJ5IE1vbnRoIikKYGBgCgpObyBvbmUgaXMgc2FkIGluIEp1bHkgYW5kIEF1Z3VzdCwgYmVjYXVzZSBpdCdzIExlbyBTZWFzb24uIEFuZCBubyBvbmUgY2FyZXMgYWJvb3V0IGZpaW5kaW5nIGEgcHN5Y2hvbG9naXN0IGluIERlY2VtYmVyLCBhcHBhcmVudGx5LiBIdWdlIHNwaWtlIGFhcm91bmQgIk5ldyBZZWFyLCBOZXcgTWUiIHRpbWUgYW5kICpTY29ycGlvIFNlYXNvbiouIAoKYGBge3J9CnBzeWNob2xvZ2lzdCAlPiUgCiAgZ2V0X2ludGVyZXN0X2RtYSgpICU+JQogIGRhdGF0YWJsZSgpCmBgYApNYW5rYXRvIGhhcyBhIHJlYWxseSBiaWcgcHN5Y2hvbG9neSBkZXBhcnRtZW50LiBodHRwczovL3Nicy5tbnN1LmVkdS9hY2FkZW1pY3MvcHN5Y2hvbG9neS8KCmBgYHtyfQpwc3ljaG9sb2dpc3RfY291bnRyaWVzIDwtIHRyZW5keSgicHN5Y2hvbG9naXN0IiwgZ2VvID0gYygiVVMiLCAiQ0EiKSkKCmBgYAoKYGBge3J9CnBzeWNob2xvZ2lzdF9jb3VudHJpZXMgJT4lIAogIGdldF9pbnRlcmVzdCgpICU+JSAKICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lIAogIGdyb3VwX2J5KG1vbnRoLCBnZW8pICU+JQogIHN1bW1hcml6ZShoaXRzX3Blcl9tb250aCA9IG1lYW4oaGl0cykpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBtb250aCwgeSA9IGhpdHNfcGVyX21vbnRoLCBjb2xvciA9IGdlbykpICsKICBnZW9tX2xpbmUoKSArCiAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdCA9IGMoMToxMikpICsKICB0aGVtZV9jbGFzc2ljKCkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9YygnZ3JlZW4nLCdyZWQnKSkgKwogIGxhYnMoeCA9ICJNb250aCIsIHkgPSAiVG90YWwgU2VhcmNoZXMiLCB0aXRsZSA9ICJHb29nbGUgU2VhcmNoZXMgaW4gQ0EgdnMgVVMgZm9yICdQc3ljaG9sb2dpc3QnIGJ5IE1vbnRoIiwgY29sb3IgPSAiQ291bnRyeSIpCmBgYAoKQ2FuYWRpYW4gcGVvcGxlIGFyZSBqdXN0IGFzIHNhZC0tdGhlIGdyYXBocyBhcmUgYmFzaWNhbGx5IG9uIHRvcCBvZiBlYWNoIG90aGVyLgoKYGBge3J9CnBzeWNob2xvZ2lzdF9wc3ljaGlhdHJpc3QgPC0gdHJlbmR5KGMoInBzeWNob2xvZ2lzdCIsICJwc3ljaGlhdHJpc3QiKSkKCmBgYAoKYGBge3J9CnBzeWNob2xvZ2lzdF9wc3ljaGlhdHJpc3QgJT4lIAogIGdldF9pbnRlcmVzdCgpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBkYXRlLCB5ID0gaGl0cywgY29sb3IgPSBrZXl3b3JkKSkgKwogIGdlb21fbGluZSgpICsKICB0aGVtZV9jbGFzc2ljKCkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9YygnZ3JlZW4nLCdyZWQnKSkgKwogIGxhYnMoeCA9ICJEYXRlIiwgeSA9ICJUb3RhbCBTZWFyY2hlcyIsIHRpdGxlID0gIkdvb2dsZSBTZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcgdnMgJ1BzeWNoaWF0cmlzdCcgT3ZlciBUaW1lIiwgY29sb3IgPSAiU2VhcmNoIFRlcm0iKQpgYGAKCkluIGdlbmVyYWwsICJwc3ljaGlhdHJpc3QiIGlzIGEgbXVjaCBsZXNzLXNlYXJjaGVkIHRlcm0sIGJ1dCBpdCBmb2xsb3dzIHRoZSBzYW1lIHRyZW5kIGFzICJwc3ljaG9sb2dpc3QsIiBhbG1vc3QgdG9vIHdlbGwuIChCdXQgInBzeWNob2xvZ2lzdCIgaXMgbXVjaCBtb3JlIGRyYXN0aWMuKQoKYGBge3J9CnBzeWNoX2ltYWdlcyA8LSB0cmVuZHkoYygicHN5Y2hvbG9naXN0IiwgInBzeWNoaWF0cmlzdCIpLCBncHJvcCA9ICJpbWFnZXMiKQoKYGBgCgpgYGB7cn0KcHN5Y2hfaW1hZ2VzICU+JSAKICBnZXRfaW50ZXJlc3QoKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZGF0ZSwgeSA9IGhpdHMsIGNvbG9yID0ga2V5d29yZCkpICsKICBnZW9tX2xpbmUoKSArCiAgdGhlbWVfY2xhc3NpYygpICsKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPWMoJ2dyZWVuJywncmVkJykpICsKICBsYWJzKHggPSAiRGF0ZSIsIAogICAgICAgeSA9ICJUb3RhbCBJbWFnZSBTZWFyY2hlcyIsIAogICAgICAgY29sb3IgPSAiU2VhcmNoIHRlcm0iLCAKICAgICAgIHRpdGxlID0gIkdvb2dsZSBJbWFnZSBTZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcgYW5kICdQc3ljaGlhdHJpc3QnIE92ZXIgVGltZSIpCmBgYAoKV2h5Li4ud2h5IGFyZSBwZW9wbGUgbG9va2luZyB1cCBwaWN0dXJlcyBvZiBhIHBzeWNoaWF0cmlzdCBvciBwc3ljaG9sb2dpc3QgdG8gYmVnaW4gd2l0aCwgYW5kIHdoeSBpcyBpdCBiZWNvbWluZyBhIG1vcmUgcG9wdWxhciBzZWFyY2ggb3ZlciB0aW1lPyBJcyB0aGlzIGEgZmV0aXNoIHRoaW5nPw==