Chapter LT, Exercise LT.C20
Let \[ w = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix} \]
compute
S(w) two different ways. First use the definition of S, then compute the matrix-vector product \[C_w\]
Suppose \[S:C_3→C_4\] is defined by
\[S(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} 3x_1-2x_2+5x_3 \\ x_1 + x_2 + x_3 \\ 9x_1-2x_2+5x_3 \\ 0x_1 + 4x_2 + 0x_3\end{bmatrix}\]
Solution
Method1
## [,1]
## [1,] -3
## [2,] 1
## [3,] 4
## [,1] [,2] [,3]
## [1,] 3 -2 5
## [2,] 1 1 1
## [3,] 9 -2 5
## [4,] 0 4 0
## [,1]
## [1,] 9
## [2,] 2
## [3,] -9
## [4,] 4
Method2
\[ S = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix} \]
\[S(e_1)=3x_1−2x_2+5x_3\] \[= 3∗−3−2∗1+5∗4\]
\[= -9 -2 +20\] \[9\]
\[S(e_2)=x_1+x_2+x_3\]
\[=-3+1+4\]
\[=2\]
\[S(e_3)=9x_1−2x_2+5x_3\]
\[=9∗−3−2∗1+5∗4\]
\[=-27-2+20\]
\[=-9\]
\[S(e_4)=0x_1+4x_2+0x_3\] \[=4∗1\] \[=4\] Hence, With both Methods we get
\[S(w)= \begin{bmatrix} 9 \\ 2 \\ -9 \\4 \end{bmatrix}\]