sample1 <- c(34, 45, 36, 47, 38)
sample2 <- rep(c(65, 32, 51, 43, 40, 35),
               100)
mean(sample1)
[1] 40
sample1
  [1] 34 45 36 47 38 34 45 36 47 38 34
 [12] 45 36 47 38 34 45 36 47 38 34 45
 [23] 36 47 38 34 45 36 47 38 34 45 36
 [34] 47 38 34 45 36 47 38 34 45 36 47
 [45] 38 34 45 36 47 38 34 45 36 47 38
 [56] 34 45 36 47 38 34 45 36 47 38 34
 [67] 45 36 47 38 34 45 36 47 38 34 45
 [78] 36 47 38 34 45 36 47 38 34 45 36
 [89] 47 38 34 45 36 47 38 34 45 36 47
[100] 38 34 45 36 47 38 34 45 36 47 38
[111] 34 45 36 47 38 34 45 36 47 38 34
[122] 45 36 47 38 34 45 36 47 38 34 45
[133] 36 47 38 34 45 36 47 38 34 45 36
[144] 47 38 34 45 36 47 38 34 45 36 47
[155] 38 34 45 36 47 38 34 45 36 47 38
[166] 34 45 36 47 38 34 45 36 47 38 34
[177] 45 36 47 38 34 45 36 47 38 34 45
[188] 36 47 38 34 45 36 47 38 34 45 36
[199] 47 38 34 45 36 47 38 34 45 36 47
[210] 38 34 45 36 47 38 34 45 36 47 38
[221] 34 45 36 47 38 34 45 36 47 38 34
[232] 45 36 47 38 34 45 36 47 38 34 45
[243] 36 47 38 34 45 36 47 38 34 45 36
[254] 47 38 34 45 36 47 38 34 45 36 47
[265] 38 34 45 36 47 38 34 45 36 47 38
[276] 34 45 36 47 38 34 45 36 47 38 34
[287] 45 36 47 38 34 45 36 47 38 34 45
[298] 36 47 38 34 45 36 47 38 34 45 36
[309] 47 38 34 45 36 47 38 34 45 36 47
[320] 38 34 45 36 47 38 34 45 36 47 38
[331] 34 45 36 47 38 34 45 36 47 38 34
[342] 45 36 47 38 34 45 36 47 38 34 45
[353] 36 47 38 34 45 36 47 38 34 45 36
[364] 47 38 34 45 36 47 38 34 45 36 47
[375] 38 34 45 36 47 38 34 45 36 47 38
[386] 34 45 36 47 38 34 45 36 47 38 34
[397] 45 36 47 38 34 45 36 47 38 34 45
[408] 36 47 38 34 45 36 47 38 34 45 36
[419] 47 38 34 45 36 47 38 34 45 36 47
[430] 38 34 45 36 47 38 34 45 36 47 38
[441] 34 45 36 47 38 34 45 36 47 38 34
[452] 45 36 47 38 34 45 36 47 38 34 45
[463] 36 47 38 34 45 36 47 38 34 45 36
[474] 47 38 34 45 36 47 38 34 45 36 47
[485] 38 34 45 36 47 38 34 45 36 47 38
[496] 34 45 36 47 38
mean(sample2)
[1] 44.33333
t.test(sample1, sample2)

    Welch Two Sample t-test

data:  sample1 and sample2
t = -1.6737, df = 4.2543, p-value
= 0.1652
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.355498   2.688832
sample estimates:
mean of x mean of y 
 40.00000  44.33333 
t.test(sample1, sample2, alternative = 'less')

    Welch Two Sample t-test

data:  sample1 and sample2
t = -1.6737, df = 4.2543, p-value
= 0.08261
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
     -Inf 1.092793
sample estimates:
mean of x mean of y 
 40.00000  44.33333 
t.test(sample1, sample2, alternative = 'greater')
dat <- read.csv("https://bit.ly/39Fr0gD")
head(dat)
summary(dat)

T-test application

Question: is it true that time depends on roundness?

round_times <- dat[dat$roundness == 'round','time']
nonround_times <- dat[dat$roundness == 'unrounded','time']
t.test(round_times, nonround_times)

    Welch Two Sample t-test

data:  round_times and nonround_times
t = -0.9631, df = 589.36, p-value = 0.3359
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -40.69893  13.91676
sample estimates:
mean of x mean of y 
 295.8432  309.2343 
t.test(time ~ roundness, data=dat)

    Welch Two Sample t-test

data:  time by roundness
t = -0.9631, df = 589.36, p-value = 0.3359
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -40.69893  13.91676
sample estimates:
    mean in group round mean in group unrounded 
               295.8432                309.2343 
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmF1dGhvcjogSWx5YSBTY2h1cm92Ci0tLQoKYGBge3J9CnNhbXBsZTEgPC0gYygzNCwgNDUsIDM2LCA0NywgMzgpCnNhbXBsZTIgPC0gcmVwKGMoNjUsIDMyLCA1MSwgNDMsIDQwLCAzNSksCiAgICAgICAgICAgICAgIDEwMCkKbWVhbihzYW1wbGUxKQpgYGAKYGBge3J9CnNhbXBsZTEKYGBgCgpgYGB7cn0KbWVhbihzYW1wbGUyKQpgYGAKCmBgYHtyfQp0LnRlc3Qoc2FtcGxlMSwgc2FtcGxlMikKYGBgCgoKYGBge3J9CnQudGVzdChzYW1wbGUxLCBzYW1wbGUyLCBhbHRlcm5hdGl2ZSA9ICdsZXNzJykKYGBgCgpgYGB7cn0KdC50ZXN0KHNhbXBsZTEsIHNhbXBsZTIsIGFsdGVybmF0aXZlID0gJ2dyZWF0ZXInKQpgYGAKCmBgYHtyfQpkYXQgPC0gcmVhZC5jc3YoImh0dHBzOi8vYml0Lmx5LzM5RnIwZ0QiKQpgYGAKCgpgYGB7cn0KaGVhZChkYXQpCmBgYAoKYGBge3J9CnN1bW1hcnkoZGF0KQpgYGAKCgojIyBULXRlc3QgYXBwbGljYXRpb24KUXVlc3Rpb246IGlzIGl0IHRydWUgdGhhdCB0aW1lIGRlcGVuZHMgb24gcm91bmRuZXNzPwoKYGBge3J9CnJvdW5kX3RpbWVzIDwtIGRhdFtkYXQkcm91bmRuZXNzID09ICdyb3VuZCcsJ3RpbWUnXQpub25yb3VuZF90aW1lcyA8LSBkYXRbZGF0JHJvdW5kbmVzcyA9PSAndW5yb3VuZGVkJywndGltZSddCmBgYApgYGB7cn0KdC50ZXN0KHJvdW5kX3RpbWVzLCBub25yb3VuZF90aW1lcykKYGBgCmBgYHtyfQp0LnRlc3QodGltZSB+IHJvdW5kbmVzcywgZGF0YT1kYXQpCmBgYAoKCg==