##function that computes HH estimator and its variance estimator
VHH=function(y,x,n){
p=x/sum(x)
N=length(y)
sa=sample(1:N,n,replace = TRUE, prob =p )
tauh=(1/n)*sum(y[sa]/p[sa])
vhat=(1/(n*(n-1)))*sum((y[sa]/p[sa]-tauh)^2)
res=c(est=tauh,varh=vhat)
res}
# simulation on trees data
VHH(trees$Height,trees$Girth,10)
## est varh
## 2295.966 21428.932
sum(trees$Height)
## [1] 2356
p=trees$Girth/sum(trees$Girth)
(1/10)*sum(p*((trees$Height/p)-sum(trees$Height))^2)
## [1] 22393.9
v=numeric(0)
for(i in 1:10000)
v=rbind(v,VHH(trees$Height,trees$Girth,10))
res=apply(v,2,mean)
#estimator of Total and its variance estimator
res
## est varh
## 2357.587 22422.108
#Histogram of estimator and its variance estimator
mean1=v[,1]
varhat=v[,2]
hist(mean1)
hist(varhat)