oume

https://rpubs.com/fumi/575348 https://sites.google.com/site/webtextofr/plot http://monge.tec.fukuoka-u.ac.jp/r_analysis/data_crosstable00.html

データフレームの考え方

http://kota.xyz/2018/01/16/r_manipulation/

R ダミー変数を使用した回帰分析?

http://jojoshin.hatenablog.com/entry/2016/05/08/005747

円グラフとレジェンドが重なる

https://stackoverflow.com/questions/13994624/pie-chart-and-legend-are-overlapping

library(readr)
## Warning: package 'readr' was built under R version 3.6.2
getwd()
## [1] "C:/Users/721540/Documents/practice"
colors()
##   [1] "white"                "aliceblue"            "antiquewhite"        
##   [4] "antiquewhite1"        "antiquewhite2"        "antiquewhite3"       
##   [7] "antiquewhite4"        "aquamarine"           "aquamarine1"         
##  [10] "aquamarine2"          "aquamarine3"          "aquamarine4"         
##  [13] "azure"                "azure1"               "azure2"              
##  [16] "azure3"               "azure4"               "beige"               
##  [19] "bisque"               "bisque1"              "bisque2"             
##  [22] "bisque3"              "bisque4"              "black"               
##  [25] "blanchedalmond"       "blue"                 "blue1"               
##  [28] "blue2"                "blue3"                "blue4"               
##  [31] "blueviolet"           "brown"                "brown1"              
##  [34] "brown2"               "brown3"               "brown4"              
##  [37] "burlywood"            "burlywood1"           "burlywood2"          
##  [40] "burlywood3"           "burlywood4"           "cadetblue"           
##  [43] "cadetblue1"           "cadetblue2"           "cadetblue3"          
##  [46] "cadetblue4"           "chartreuse"           "chartreuse1"         
##  [49] "chartreuse2"          "chartreuse3"          "chartreuse4"         
##  [52] "chocolate"            "chocolate1"           "chocolate2"          
##  [55] "chocolate3"           "chocolate4"           "coral"               
##  [58] "coral1"               "coral2"               "coral3"              
##  [61] "coral4"               "cornflowerblue"       "cornsilk"            
##  [64] "cornsilk1"            "cornsilk2"            "cornsilk3"           
##  [67] "cornsilk4"            "cyan"                 "cyan1"               
##  [70] "cyan2"                "cyan3"                "cyan4"               
##  [73] "darkblue"             "darkcyan"             "darkgoldenrod"       
##  [76] "darkgoldenrod1"       "darkgoldenrod2"       "darkgoldenrod3"      
##  [79] "darkgoldenrod4"       "darkgray"             "darkgreen"           
##  [82] "darkgrey"             "darkkhaki"            "darkmagenta"         
##  [85] "darkolivegreen"       "darkolivegreen1"      "darkolivegreen2"     
##  [88] "darkolivegreen3"      "darkolivegreen4"      "darkorange"          
##  [91] "darkorange1"          "darkorange2"          "darkorange3"         
##  [94] "darkorange4"          "darkorchid"           "darkorchid1"         
##  [97] "darkorchid2"          "darkorchid3"          "darkorchid4"         
## [100] "darkred"              "darksalmon"           "darkseagreen"        
## [103] "darkseagreen1"        "darkseagreen2"        "darkseagreen3"       
## [106] "darkseagreen4"        "darkslateblue"        "darkslategray"       
## [109] "darkslategray1"       "darkslategray2"       "darkslategray3"      
## [112] "darkslategray4"       "darkslategrey"        "darkturquoise"       
## [115] "darkviolet"           "deeppink"             "deeppink1"           
## [118] "deeppink2"            "deeppink3"            "deeppink4"           
## [121] "deepskyblue"          "deepskyblue1"         "deepskyblue2"        
## [124] "deepskyblue3"         "deepskyblue4"         "dimgray"             
## [127] "dimgrey"              "dodgerblue"           "dodgerblue1"         
## [130] "dodgerblue2"          "dodgerblue3"          "dodgerblue4"         
## [133] "firebrick"            "firebrick1"           "firebrick2"          
## [136] "firebrick3"           "firebrick4"           "floralwhite"         
## [139] "forestgreen"          "gainsboro"            "ghostwhite"          
## [142] "gold"                 "gold1"                "gold2"               
## [145] "gold3"                "gold4"                "goldenrod"           
## [148] "goldenrod1"           "goldenrod2"           "goldenrod3"          
## [151] "goldenrod4"           "gray"                 "gray0"               
## [154] "gray1"                "gray2"                "gray3"               
## [157] "gray4"                "gray5"                "gray6"               
## [160] "gray7"                "gray8"                "gray9"               
## [163] "gray10"               "gray11"               "gray12"              
## [166] "gray13"               "gray14"               "gray15"              
## [169] "gray16"               "gray17"               "gray18"              
## [172] "gray19"               "gray20"               "gray21"              
## [175] "gray22"               "gray23"               "gray24"              
## [178] "gray25"               "gray26"               "gray27"              
## [181] "gray28"               "gray29"               "gray30"              
## [184] "gray31"               "gray32"               "gray33"              
## [187] "gray34"               "gray35"               "gray36"              
## [190] "gray37"               "gray38"               "gray39"              
## [193] "gray40"               "gray41"               "gray42"              
## [196] "gray43"               "gray44"               "gray45"              
## [199] "gray46"               "gray47"               "gray48"              
## [202] "gray49"               "gray50"               "gray51"              
## [205] "gray52"               "gray53"               "gray54"              
## [208] "gray55"               "gray56"               "gray57"              
## [211] "gray58"               "gray59"               "gray60"              
## [214] "gray61"               "gray62"               "gray63"              
## [217] "gray64"               "gray65"               "gray66"              
## [220] "gray67"               "gray68"               "gray69"              
## [223] "gray70"               "gray71"               "gray72"              
## [226] "gray73"               "gray74"               "gray75"              
## [229] "gray76"               "gray77"               "gray78"              
## [232] "gray79"               "gray80"               "gray81"              
## [235] "gray82"               "gray83"               "gray84"              
## [238] "gray85"               "gray86"               "gray87"              
## [241] "gray88"               "gray89"               "gray90"              
## [244] "gray91"               "gray92"               "gray93"              
## [247] "gray94"               "gray95"               "gray96"              
## [250] "gray97"               "gray98"               "gray99"              
## [253] "gray100"              "green"                "green1"              
## [256] "green2"               "green3"               "green4"              
## [259] "greenyellow"          "grey"                 "grey0"               
## [262] "grey1"                "grey2"                "grey3"               
## [265] "grey4"                "grey5"                "grey6"               
## [268] "grey7"                "grey8"                "grey9"               
## [271] "grey10"               "grey11"               "grey12"              
## [274] "grey13"               "grey14"               "grey15"              
## [277] "grey16"               "grey17"               "grey18"              
## [280] "grey19"               "grey20"               "grey21"              
## [283] "grey22"               "grey23"               "grey24"              
## [286] "grey25"               "grey26"               "grey27"              
## [289] "grey28"               "grey29"               "grey30"              
## [292] "grey31"               "grey32"               "grey33"              
## [295] "grey34"               "grey35"               "grey36"              
## [298] "grey37"               "grey38"               "grey39"              
## [301] "grey40"               "grey41"               "grey42"              
## [304] "grey43"               "grey44"               "grey45"              
## [307] "grey46"               "grey47"               "grey48"              
## [310] "grey49"               "grey50"               "grey51"              
## [313] "grey52"               "grey53"               "grey54"              
## [316] "grey55"               "grey56"               "grey57"              
## [319] "grey58"               "grey59"               "grey60"              
## [322] "grey61"               "grey62"               "grey63"              
## [325] "grey64"               "grey65"               "grey66"              
## [328] "grey67"               "grey68"               "grey69"              
## [331] "grey70"               "grey71"               "grey72"              
## [334] "grey73"               "grey74"               "grey75"              
## [337] "grey76"               "grey77"               "grey78"              
## [340] "grey79"               "grey80"               "grey81"              
## [343] "grey82"               "grey83"               "grey84"              
## [346] "grey85"               "grey86"               "grey87"              
## [349] "grey88"               "grey89"               "grey90"              
## [352] "grey91"               "grey92"               "grey93"              
## [355] "grey94"               "grey95"               "grey96"              
## [358] "grey97"               "grey98"               "grey99"              
## [361] "grey100"              "honeydew"             "honeydew1"           
## [364] "honeydew2"            "honeydew3"            "honeydew4"           
## [367] "hotpink"              "hotpink1"             "hotpink2"            
## [370] "hotpink3"             "hotpink4"             "indianred"           
## [373] "indianred1"           "indianred2"           "indianred3"          
## [376] "indianred4"           "ivory"                "ivory1"              
## [379] "ivory2"               "ivory3"               "ivory4"              
## [382] "khaki"                "khaki1"               "khaki2"              
## [385] "khaki3"               "khaki4"               "lavender"            
## [388] "lavenderblush"        "lavenderblush1"       "lavenderblush2"      
## [391] "lavenderblush3"       "lavenderblush4"       "lawngreen"           
## [394] "lemonchiffon"         "lemonchiffon1"        "lemonchiffon2"       
## [397] "lemonchiffon3"        "lemonchiffon4"        "lightblue"           
## [400] "lightblue1"           "lightblue2"           "lightblue3"          
## [403] "lightblue4"           "lightcoral"           "lightcyan"           
## [406] "lightcyan1"           "lightcyan2"           "lightcyan3"          
## [409] "lightcyan4"           "lightgoldenrod"       "lightgoldenrod1"     
## [412] "lightgoldenrod2"      "lightgoldenrod3"      "lightgoldenrod4"     
## [415] "lightgoldenrodyellow" "lightgray"            "lightgreen"          
## [418] "lightgrey"            "lightpink"            "lightpink1"          
## [421] "lightpink2"           "lightpink3"           "lightpink4"          
## [424] "lightsalmon"          "lightsalmon1"         "lightsalmon2"        
## [427] "lightsalmon3"         "lightsalmon4"         "lightseagreen"       
## [430] "lightskyblue"         "lightskyblue1"        "lightskyblue2"       
## [433] "lightskyblue3"        "lightskyblue4"        "lightslateblue"      
## [436] "lightslategray"       "lightslategrey"       "lightsteelblue"      
## [439] "lightsteelblue1"      "lightsteelblue2"      "lightsteelblue3"     
## [442] "lightsteelblue4"      "lightyellow"          "lightyellow1"        
## [445] "lightyellow2"         "lightyellow3"         "lightyellow4"        
## [448] "limegreen"            "linen"                "magenta"             
## [451] "magenta1"             "magenta2"             "magenta3"            
## [454] "magenta4"             "maroon"               "maroon1"             
## [457] "maroon2"              "maroon3"              "maroon4"             
## [460] "mediumaquamarine"     "mediumblue"           "mediumorchid"        
## [463] "mediumorchid1"        "mediumorchid2"        "mediumorchid3"       
## [466] "mediumorchid4"        "mediumpurple"         "mediumpurple1"       
## [469] "mediumpurple2"        "mediumpurple3"        "mediumpurple4"       
## [472] "mediumseagreen"       "mediumslateblue"      "mediumspringgreen"   
## [475] "mediumturquoise"      "mediumvioletred"      "midnightblue"        
## [478] "mintcream"            "mistyrose"            "mistyrose1"          
## [481] "mistyrose2"           "mistyrose3"           "mistyrose4"          
## [484] "moccasin"             "navajowhite"          "navajowhite1"        
## [487] "navajowhite2"         "navajowhite3"         "navajowhite4"        
## [490] "navy"                 "navyblue"             "oldlace"             
## [493] "olivedrab"            "olivedrab1"           "olivedrab2"          
## [496] "olivedrab3"           "olivedrab4"           "orange"              
## [499] "orange1"              "orange2"              "orange3"             
## [502] "orange4"              "orangered"            "orangered1"          
## [505] "orangered2"           "orangered3"           "orangered4"          
## [508] "orchid"               "orchid1"              "orchid2"             
## [511] "orchid3"              "orchid4"              "palegoldenrod"       
## [514] "palegreen"            "palegreen1"           "palegreen2"          
## [517] "palegreen3"           "palegreen4"           "paleturquoise"       
## [520] "paleturquoise1"       "paleturquoise2"       "paleturquoise3"      
## [523] "paleturquoise4"       "palevioletred"        "palevioletred1"      
## [526] "palevioletred2"       "palevioletred3"       "palevioletred4"      
## [529] "papayawhip"           "peachpuff"            "peachpuff1"          
## [532] "peachpuff2"           "peachpuff3"           "peachpuff4"          
## [535] "peru"                 "pink"                 "pink1"               
## [538] "pink2"                "pink3"                "pink4"               
## [541] "plum"                 "plum1"                "plum2"               
## [544] "plum3"                "plum4"                "powderblue"          
## [547] "purple"               "purple1"              "purple2"             
## [550] "purple3"              "purple4"              "red"                 
## [553] "red1"                 "red2"                 "red3"                
## [556] "red4"                 "rosybrown"            "rosybrown1"          
## [559] "rosybrown2"           "rosybrown3"           "rosybrown4"          
## [562] "royalblue"            "royalblue1"           "royalblue2"          
## [565] "royalblue3"           "royalblue4"           "saddlebrown"         
## [568] "salmon"               "salmon1"              "salmon2"             
## [571] "salmon3"              "salmon4"              "sandybrown"          
## [574] "seagreen"             "seagreen1"            "seagreen2"           
## [577] "seagreen3"            "seagreen4"            "seashell"            
## [580] "seashell1"            "seashell2"            "seashell3"           
## [583] "seashell4"            "sienna"               "sienna1"             
## [586] "sienna2"              "sienna3"              "sienna4"             
## [589] "skyblue"              "skyblue1"             "skyblue2"            
## [592] "skyblue3"             "skyblue4"             "slateblue"           
## [595] "slateblue1"           "slateblue2"           "slateblue3"          
## [598] "slateblue4"           "slategray"            "slategray1"          
## [601] "slategray2"           "slategray3"           "slategray4"          
## [604] "slategrey"            "snow"                 "snow1"               
## [607] "snow2"                "snow3"                "snow4"               
## [610] "springgreen"          "springgreen1"         "springgreen2"        
## [613] "springgreen3"         "springgreen4"         "steelblue"           
## [616] "steelblue1"           "steelblue2"           "steelblue3"          
## [619] "steelblue4"           "tan"                  "tan1"                
## [622] "tan2"                 "tan3"                 "tan4"                
## [625] "thistle"              "thistle1"             "thistle2"            
## [628] "thistle3"             "thistle4"             "tomato"              
## [631] "tomato1"              "tomato2"              "tomato3"             
## [634] "tomato4"              "turquoise"            "turquoise1"          
## [637] "turquoise2"           "turquoise3"           "turquoise4"          
## [640] "violet"               "violetred"            "violetred1"          
## [643] "violetred2"           "violetred3"           "violetred4"          
## [646] "wheat"                "wheat1"               "wheat2"              
## [649] "wheat3"               "wheat4"               "whitesmoke"          
## [652] "yellow"               "yellow1"              "yellow2"             
## [655] "yellow3"              "yellow4"              "yellowgreen"
colors6 <- c("red","orange","yellow","lightgreen","green","skyblue")


colors23 <- c("red","antiquewhite","aquamarine","azure","bisque","blue",
              "brown","burlywood","cadetblue","chartreuse","chocolate","coral",
              "cyan","darkblue","darkgray","darkgreen","darkorange","darksalmon",
              "darkslateblue","deeppink","gold","lavenderblush","lightblue")
# oumetest <- read.csv(file("oumetest.csv",encoding='utf8'), na = ".")

oumetest<- read_csv("oumetest.csv")
## Warning: Missing column names filled in: 'X12' [12]
## Warning: Duplicated column names deduplicated: 'no' => 'no_1' [9]
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   対応内容 = col_character(),
##   対応区分 = col_character(),
##   発生日 = col_character(),
##   フラグ = col_character(),
##   備考 = col_character(),
##   住所 = col_character(),
##   no_1 = col_character(),
##   geocoding = col_character(),
##   X12 = col_character(),
##   対処 = col_character(),
##   発生場所 = col_character(),
##   対策工法 = col_character(),
##   発生原因 = col_character()
## )
## See spec(...) for full column specifications.
income <- as.data.frame(oumetest)
#何故か家のpcでは次の文法でしか2バイト文字を読み込めなかったものが、こちらではエラーになる???なぜ?
#ancate <- read.csv(file("oumetest.csv",encoding='cp932'), na = ".")
#ancate <- read.csv("oumetest.csv", fileEncoding ='utf8', na = ".")#まちがい


ancate <- read.csv("oumetest.csv", fileEncoding ="UTF-8", na = ".")#まちがい
## Warning in read.table(file = file, header = header, sep = sep, quote = quote, :
## 入力コネクション 'oumetest.csv' に不正な入力がありました
## Warning in read.table(file = file, header = header, sep = sep, quote = quote, :
## incomplete final line found by readTableHeader on 'oumetest.csv'
income2 <- as.data.frame(ancate)
head(ancate)
## [1] X.
## <0 rows> (or 0-length row.names)
head(income2)
## [1] X.
## <0 rows> (or 0-length row.names)
ancate <- read.table("oumetest.csv", sep=",", skip=0, header=T, stringsAsFactors=F,fileEncoding="UTF-8")##まちがい?
## Warning in read.table("oumetest.csv", sep = ",", skip = 0, header = T,
## stringsAsFactors = F, : 入力コネクション 'oumetest.csv' に不正な入力がありました
## Warning in read.table("oumetest.csv", sep = ",", skip = 0, header = T,
## stringsAsFactors = F, : incomplete final line found by readTableHeader on
## 'oumetest.csv'
income2 <- as.data.frame(ancate)
head(ancate)
## [1] X.
## <0 rows> (or 0-length row.names)
head(income2)
## [1] X.
## <0 rows> (or 0-length row.names)
head(income)
##   no
## 1  1
## 2  2
## 3  3
## 4  4
## 5  5
## 6  7
##                                                                                  対応内容
## 1 マンホール番号123232354側(富岡3丁目1229側) 臭気  水路清掃 役所:平岡氏・松永氏立会い
## 2                               マンホール番号183243402(新町1丁目24-26側) 枠周辺破損 補修工 
## 3 マンホール番号183113440(師岡町2丁目354-8 岡野宅) 公共桝枠ズレ 補修工  役所:平岡氏立会い
## 4                                    マンホール番号203424413(末広町1丁目6側) 蓋間違い 蓋交換
## 5                        マンホール番号182733401(日向和田1丁目113側) 蓋ボルトなし  ボルト取付け
## 6    マンホール番号182933438他3箇所(西分町1丁目62側) 路面凹み 現場調査  役所:松永氏立会い
##                 対応区分 発生月          発生日 フラグ 備考          住所
## 1  発生対応 (市民通報)      4  平成26年4月1日     ○ <NA>    富岡3-1229
## 2 予防保全(点検・調査)      4  平成26年4月1日     ○ <NA>   新町1-24-26
## 3  発生対応 (市民通報)      4 平成26年4月11日     ○ <NA> 師岡町2-354-8
## 4 予防保全(点検・調査)      4 平成26年4月11日     ○ <NA>     末広町1-6
## 5 予防保全(点検・調査)      4 平成26年4月11日     ○ <NA> 日向和田1-113
## 6     発生対応(その他)      4 平成26年4月17日     ○ <NA>    西分町1-62
##        no_1 発生年度           geocoding                        X12 調査 工事
## 1 123232354     2014    青梅市富岡3-1229          臭気  雨水路清掃    0    0
## 2 183243402     2014   青梅市新町1-24-26          枠周辺破損 補修工    0    1
## 3 183113440     2014 青梅市師岡町2-354-8       公共桝枠ズレ 補修工    0    1
## 4 203424413     2014     青梅市末広町1-6         蓋間違い 蓋交換工    0    1
## 5 182733401     2014 青梅市日向和田1-113 蓋ボルトなし  ボルト取付け工    0    1
## 6 182933438     2014    青梅市西分町1-62         路面凹み 現場調査    1    0
##   清掃 調査・工事 調査・清掃 対処 桝 人孔 副管 枠 蓋 弁 取付管 圧送管 路面 槽
## 1    1          0          0 清掃  0    0    0  0  0  0      0      0    0  0
## 2    0          0          0 工事  0    0    0  1  0  0      0      0    0  0
## 3    0          0          0 工事  1    0    0  1  0  0      0      0    0  0
## 4    0          0          0 工事  0    0    0  0  1  0      0      0    0  0
## 5    0          0          0 工事  0    0    0  0  1  0      1      0    0  0
## 6    0          0          0 調査  0    0    0  0  0  0      0      0    1  0
##   本管 雨水 宅地 発生場所 補修 除去 パッチング 木根除去 消毒 水替 蓋交換 充填
## 1    0    1    0 雨水施設    0    0          0        0    0    0      0    0
## 2    0    0    0       枠    1    0          0        0    0    0      0    0
## 3    0    0    0       桝    1    0          0        0    0    0      0    0
## 4    0    0    0       蓋    0    0          0        0    0    0      1    0
## 5    0    0    0       蓋    0    0          0        0    0    0      0    0
## 6    0    0    0     路面    0    0          0        0    0    0      0    0
##   砂補充     対策工法 油脂付着 臭気 つまり マンホール溢水 砂不足 木根侵入 ガツツキ
## 1      0 工事対象外他        0    1      0         0      0        0        0
## 2      0         補修        0    0      0         0      0        0        0
## 3      0         補修        0    0      0         0      0        0        0
## 4      0       蓋交換        0    0      0         0      0        0        0
## 5      0 工事対象外他        0    0      0         0      0        0        0
## 6      0 工事対象外他        0    0      0         0      0        0        0
##   段差 へこみ 破損 ズレ ウキ 陥没 発生原因
## 1    0      0    0    0    0    0     悪臭
## 2    0      0    1    0    0    0     破損
## 3    0      0    0    1    0    0     ズレ
## 4    0      0    0    0    0    0   その他
## 5    0      0    0    0    0    0   その他
## 6    0      1    0    0    0    0     凹み
dim(income)
## [1] 918  56
summary(income)
##        no          対応内容           対応区分             発生月      
##  Min.   :  1.0   Length:918         Length:918         Min.   : 1.000  
##  1st Qu.:230.8   Class :character   Class :character   1st Qu.: 4.000  
##  Median :459.5   Mode  :character   Mode  :character   Median : 8.000  
##  Mean   :459.5                                         Mean   : 7.249  
##  3rd Qu.:688.2                                         3rd Qu.:10.000  
##  Max.   :917.0                                         Max.   :12.000  
##  NA's   :2                                             NA's   :2       
##     発生日             フラグ              備考               住所          
##  Length:918         Length:918         Length:918         Length:918        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##      no_1              発生年度     geocoding             X12           
##  Length:918         Min.   :2014   Length:918         Length:918        
##  Class :character   1st Qu.:2015   Class :character   Class :character  
##  Mode  :character   Median :2017   Mode  :character   Mode  :character  
##                     Mean   :2017                                        
##                     3rd Qu.:2018                                        
##                     Max.   :2019                                        
##                     NA's   :2                                           
##       調査             工事             清掃           調査・工事     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.2838   Mean   :0.4367   Mean   :0.04803   Mean   :0.01638  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##  NA's   :2        NA's   :2        NA's   :2         NA's   :2        
##    調査・清掃           対処                 桝             人孔       
##  Min.   :0.000000   Length:918         Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.000000   Class :character   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.000000   Mode  :character   Median :0.000   Median :0.0000  
##  Mean   :0.001092                      Mean   :0.191   Mean   :0.1037  
##  3rd Qu.:0.000000                      3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.000000                      Max.   :1.000   Max.   :1.0000  
##  NA's   :2                             NA's   :2       NA's   :2       
##       副管                枠               蓋               弁         
##  Min.   :0.000000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.000000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.000000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.009825   Mean   :0.2194   Mean   :0.1321   Mean   :0.02293  
##  3rd Qu.:0.000000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.000000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##  NA's   :2          NA's   :2        NA's   :2        NA's   :2        
##      取付管            圧送管              路面             槽          
##  Min.   :0.00000   Min.   :0.000000   Min.   :0.000   Min.   :0.000000  
##  1st Qu.:0.00000   1st Qu.:0.000000   1st Qu.:0.000   1st Qu.:0.000000  
##  Median :0.00000   Median :0.000000   Median :0.000   Median :0.000000  
##  Mean   :0.08515   Mean   :0.003275   Mean   :0.131   Mean   :0.002183  
##  3rd Qu.:0.00000   3rd Qu.:0.000000   3rd Qu.:0.000   3rd Qu.:0.000000  
##  Max.   :1.00000   Max.   :1.000000   Max.   :1.000   Max.   :1.000000  
##  NA's   :2         NA's   :2          NA's   :2       NA's   :2         
##       本管              雨水              宅地           発生場所        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Length:918        
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   Class :character  
##  Median :0.00000   Median :0.00000   Median :0.00000   Mode  :character  
##  Mean   :0.08188   Mean   :0.01201   Mean   :0.01965                     
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000                     
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000                     
##  NA's   :2         NA's   :2         NA's   :2                           
##       補修             除去           パッチング         木根除去      
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.2107   Mean   :0.08406   Mean   :0.06441   Mean   :0.02838  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##  NA's   :2        NA's   :2         NA's   :2         NA's   :2        
##       消毒              水替             蓋交換             充填        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.01747   Mean   :0.02293   Mean   :0.03603   Mean   :0.06769  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##  NA's   :2         NA's   :2         NA's   :2         NA's   :2        
##      砂補充         対策工法            油脂付着             臭気         
##  Min.   :0.0000   Length:918         Min.   : 0.00000   Min.   :0.000000  
##  1st Qu.:0.0000   Class :character   1st Qu.: 0.00000   1st Qu.:0.000000  
##  Median :0.0000   Mode  :character   Median : 0.00000   Median :0.000000  
##  Mean   :0.0131                      Mean   : 0.07415   Mean   :0.006543  
##  3rd Qu.:0.0000                      3rd Qu.: 0.00000   3rd Qu.:0.000000  
##  Max.   :1.0000                      Max.   :34.00000   Max.   :3.000000  
##  NA's   :2                           NA's   :1          NA's   :1         
##      つまり           マンホール溢水           砂不足            木根侵入       
##  Min.   : 0.00000   Min.   : 0.0000   Min.   : 0.00000   Min.   : 0.00000  
##  1st Qu.: 0.00000   1st Qu.: 0.0000   1st Qu.: 0.00000   1st Qu.: 0.00000  
##  Median : 0.00000   Median : 0.0000   Median : 0.00000   Median : 0.00000  
##  Mean   : 0.09815   Mean   : 0.0349   Mean   : 0.02617   Mean   : 0.05671  
##  3rd Qu.: 0.00000   3rd Qu.: 0.0000   3rd Qu.: 0.00000   3rd Qu.: 0.00000  
##  Max.   :45.00000   Max.   :16.0000   Max.   :12.00000   Max.   :26.00000  
##  NA's   :1          NA's   :1         NA's   :1          NA's   :1         
##     ガツツキ            段差             へこみ             破損         
##  Min.   : 0.0000   Min.   : 0.0000   Min.   : 0.0000   Min.   :  0.0000  
##  1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.:  0.0000  
##  Median : 0.0000   Median : 0.0000   Median : 0.0000   Median :  0.0000  
##  Mean   : 0.1527   Mean   : 0.1221   Mean   : 0.1309   Mean   :  0.3075  
##  3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.:  0.0000  
##  Max.   :70.0000   Max.   :56.0000   Max.   :60.0000   Max.   :141.0000  
##  NA's   :1         NA's   :1         NA's   :1         NA's   :1         
##       ズレ               ウキ             陥没            発生原因        
##  Min.   :  0.0000   Min.   :0.0000   Min.   : 0.00000   Length:918        
##  1st Qu.:  0.0000   1st Qu.:0.0000   1st Qu.: 0.00000   Class :character  
##  Median :  0.0000   Median :0.0000   Median : 0.00000   Mode  :character  
##  Mean   :  0.5719   Mean   :0.0109   Mean   : 0.05235                     
##  3rd Qu.:  0.0000   3rd Qu.:0.0000   3rd Qu.: 0.00000                     
##  Max.   :503.0000   Max.   :5.0000   Max.   :24.00000                     
##                     NA's   :1        NA's   :1
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

#stargazer(as.data.frame(income),間違い

#```{r,results=“asis”} #strargazer(as.data.frame(oumetest), #type = “html”)

stargazer(as.data.frame(oumetest),
type = "html")
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
no 916 459.495 264.580 1.000 230.750 688.250 917.000
発生月 916 7.249 3.627 1.000 4.000 10.000 12.000
発生年度 916 2,016.605 1.651 2,014.000 2,015.000 2,018.000 2,019.000
調査 916 0.284 0.451 0.000 0.000 1.000 1.000
工事 916 0.437 0.496 0.000 0.000 1.000 1.000
清掃 916 0.048 0.214 0.000 0.000 0.000 1.000
調査・工事 916 0.016 0.127 0.000 0.000 0.000 1.000
調査・清掃 916 0.001 0.033 0.000 0.000 0.000 1.000
916 0.191 0.393 0.000 0.000 0.000 1.000
人孔 916 0.104 0.305 0.000 0.000 0.000 1.000
副管 916 0.010 0.099 0.000 0.000 0.000 1.000
916 0.219 0.414 0.000 0.000 0.000 1.000
916 0.132 0.339 0.000 0.000 0.000 1.000
916 0.023 0.150 0.000 0.000 0.000 1.000
取付管 916 0.085 0.279 0.000 0.000 0.000 1.000
圧送管 916 0.003 0.057 0.000 0.000 0.000 1.000
路面 916 0.131 0.338 0.000 0.000 0.000 1.000
916 0.002 0.047 0.000 0.000 0.000 1.000
本管 916 0.082 0.274 0.000 0.000 0.000 1.000
雨水 916 0.012 0.109 0.000 0.000 0.000 1.000
宅地 916 0.020 0.139 0.000 0.000 0.000 1.000
補修 916 0.211 0.408 0.000 0.000 0.000 1.000
除去 916 0.084 0.278 0.000 0.000 0.000 1.000
パッチング 916 0.064 0.246 0.000 0.000 0.000 1.000
木根除去 916 0.028 0.166 0.000 0.000 0.000 1.000
消毒 916 0.017 0.131 0.000 0.000 0.000 1.000
水替 916 0.023 0.150 0.000 0.000 0.000 1.000
蓋交換 916 0.036 0.186 0.000 0.000 0.000 1.000
充填 916 0.068 0.251 0.000 0.000 0.000 1.000
砂補充 916 0.013 0.114 0.000 0.000 0.000 1.000
油脂付着 917 0.074 1.137 0.000 0.000 0.000 34.000
臭気 917 0.007 0.114 0.000 0.000 0.000 3.000
つまり 917 0.098 1.500 0.000 0.000 0.000 45.000
マンホール溢水 917 0.035 0.544 0.000 0.000 0.000 16.000
砂不足 917 0.026 0.412 0.000 0.000 0.000 12.000
木根侵入 917 0.057 0.874 0.000 0.000 0.000 26.000
ガツツキ 917 0.153 2.324 0.000 0.000 0.000 70.000
段差 917 0.122 1.863 0.000 0.000 0.000 56.000
へこみ 917 0.131 1.995 0.000 0.000 0.000 60.000
破損 917 0.308 4.665 0.000 0.000 0.000 141.000
ズレ 918 0.572 16.605 0 0 0 503
ウキ 917 0.011 0.181 0.000 0.000 0.000 5.000
陥没 917 0.052 0.808 0.000 0.000 0.000 24.000
#library(xtable)
#print(xtable(income),type="html")
library(ggplot2) #ggplotパッケージをロード#日本語KUBUNだと作図されない
ggplot(income,aes(清掃))+
geom_histogram(aes(y = ..density..),
bins = 10,
colour = "gray",
fill = "blue")+
  theme_classic()
## Warning: Removed 2 rows containing non-finite values (stat_bin).

#KK <- as.factor(income$清掃)
#KK
#library(ggplot2) #ggplotパッケージをロード#日本語KUBUNだと作図されない
#ggplot(income,aes(KK))+
#geom_histogram(aes(y = ..density..),
#bins = 10,
#colour = "gray",
#fill = "blue")+
#  theme_classic()

円グラフによる対応区分比率

colors <- c(1,2,3,4,5,6,7,8)
colors
## [1] 1 2 3 4 5 6 7 8
colors3 <- heat.colors(12)
colors4 <- rainbow(12)
library(RColorBrewer)
colors5<- brewer.pal(10, "Set1")
## Warning in brewer.pal(10, "Set1"): n too large, allowed maximum for palette Set1 is 9
## Returning the palette you asked for with that many colors
xx <- c("対応区分内訳")
table.q6 <- table(income$対応区分)
table.q6
## 
##       緊急事態の待機・出動      発生対応 (市民通報) 
##                         37                        285 
##         発生対応(その他) 発生対応(道路等の管理者) 
##                         22                         93 
##         予防保全(その他)     予防保全(点検・調査) 
##                        216                        262
par(xpd=TRUE)
pie(table.q6, col=rainbow(12),clockwise=TRUE)
legend("top", inset=c(0,-0.1),cex=1.5,legend = xx, fill=colors, bty="n")

上記グラフに%をいれる。

library(dplyr) library(ggplot2) library(scales)

df <- income group = c(“緊急事態の待機・出動”, “発生対応 (市民通報)”, “発生対応(その他)”, “発生対応(道路等の管理者),”予防保全(その他)“,”予防保全(点検・調査)") value = c(37, 285, 22, 93, 216,262)

df %>% ggplot(aes(x="“, y=value, fill=group)) + geom_col() + geom_text(aes(label = percent(value/100)), position = position_stack(vjust = 0.5)) + scale_fill_brewer(palette =”Blues“) + coord_polar(”y“) + theme_void() + labs(title =”TITLE“, fill =”LEGEND")

x <- c(“対応区分内訳”)

xx <- c(“緊急事態の待機・出動”, “発生対応 (市民通報)”, “発生対応(その他)”, “発生対応(道路等の管理者)”, “予防保全(その他)”, “予防保全(点検・調査)”)

colors <- colors6

xx <- c("緊急事態の待機・出動(4%)",
        "発生対応 (市民通報)(31.1%)",
        "発生対応(その他)(2.4%)",
        "発生対応(道路等の管理者)(10.2%)",
        "予防保全(その他)(23.6%)",
        "予防保全(点検・調査)(28.6%)"
        )
        
numb = c(37, 285, 22, 93, 216,262)
#par(mai = c(0,0,0,0))
par(mfrow=c(1,2))
layout(c(1,2),heights=c(1,2))
numb_labels <- round(numb/sum(numb) * 100, 1)
numb_labels <- paste(numb_labels, "%", sep=" ")

par(mai = c(0,0,0,0))
layout(c(1,2),heights=c(0.5,1))
plot.new()
legend("left", legend = xx, fill=colors, bty="o")
pie(numb, col=colors, labels=numb_labels, clockwise=TRUE)

par(mai = c(0,0,0,0))
layout(c(1,2),heights=c(0.3,1))
plot.new()
legend("bottom", legend = xx, fill=colors, bty="n")
pie(numb, col=colors, labels=numb_labels, clockwise=TRUE)
title("対応区分比率")

xx <- c("発生年度")
table.q6 <- table(income$発生年度)
table.q6
## 
## 2014 2015 2016 2017 2018 2019 
##  138  133  135  195  177  138
par(xpd=TRUE)
pie(table.q6, col=rainbow(12),clockwise=TRUE)
legend("top", inset=c(0,-0.1),cex=1.5,legend = xx, fill=colors, bty="n")

#カテゴリカル変数とカテゴリカル変数-クロス集計

発生月毎の対応区分 http://www.math.chuo-u.ac.jp/~sakaori/R/categorical.html

cross <- table(income\(発生月,income\)対応区分) prop.table(cross) prop.table(cross,1) prop.table(cross,2)

cross <- table(income$対応区分,income$発生月)
prop.table(cross)
##                             
##                                        1           2           3           4
##   緊急事態の待機・出動       0.000000000 0.003278689 0.001092896 0.001092896
##   発生対応 (市民通報)      0.019672131 0.017486339 0.022950820 0.028415301
##   発生対応(その他)         0.006557377 0.001092896 0.000000000 0.004371585
##   発生対応(道路等の管理者) 0.003278689 0.007650273 0.008743169 0.003278689
##   予防保全(その他)         0.014207650 0.018579235 0.015300546 0.017486339
##   予防保全(点検・調査)     0.030601093 0.019672131 0.014207650 0.014207650
##                             
##                                        5           6           7           8
##   緊急事態の待機・出動       0.001092896 0.000000000 0.000000000 0.001092896
##   発生対応 (市民通報)      0.025136612 0.028415301 0.014207650 0.022950820
##   発生対応(その他)         0.001092896 0.001092896 0.001092896 0.005464481
##   発生対応(道路等の管理者) 0.022950820 0.012021858 0.003278689 0.010928962
##   予防保全(その他)         0.018579235 0.018579235 0.013114754 0.029508197
##   予防保全(点検・調査)     0.009836066 0.028415301 0.010928962 0.004371585
##                             
##                                        9          10          11          12
##   緊急事態の待機・出動       0.002185792 0.026229508 0.000000000 0.004371585
##   発生対応 (市民通報)      0.024043716 0.040437158 0.040437158 0.027322404
##   発生対応(その他)         0.002185792 0.000000000 0.001092896 0.000000000
##   発生対応(道路等の管理者) 0.003278689 0.005464481 0.008743169 0.012021858
##   予防保全(その他)         0.031693989 0.029508197 0.010928962 0.018579235
##   予防保全(点検・調査)     0.003278689 0.030601093 0.027322404 0.092896175

月別集計グラフ

棒グラフとレジェンドが重なる

https://stackoverflow.com/questions/13994624/pie-chart-and-legend-are-overlapping

#ここでは,t 関数で表のタテヨコをひっくり返して作っておく.
xx <- c("月別対応区分")
par(xpd=TRUE)
cross <- table(income$発生月,income$対応区分)
ptable <- cross
barplot(t(ptable), col=rainbow(12),legend = TRUE,clockwise=TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
#legend("topleft", inset=c(0,-0.05),cex=1.0,legend = xx, fill=colors, bty="n")
title("月別対応区分度数")

逆転しているためx軸、y軸が逆転 https://stats.biopapyrus.jp/r/graph/barplot.html

xx <- c("月別対応区分")
cross <- table(income$発生月,income$対応区分)
ptable <- cross
par(xpd=TRUE)
barplot(t(ptable), col=rainbow(12),clockwise=TRUE,beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別対応区分度数")

#barplot(t(ptable), col=rainbow(12),beside = TRUE,legend = TRUE,xlab = “月”,ylab = “対応区分度数) barplot(t(ptable), col=rainbow(12),xlab =”月“,ylab =”対応区分度数)

月別集計

xx <- c("月別対応区分度数")
cross <- table(income$発生月,income$対応区分)
par(xpd=TRUE)
ptable <- cross
#ptable <- prop.table(cross)
barplot(t(ptable), col=rainbow(8),clockwise=TRUE,xlab = "対応月",ylab = "対応区分度数",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別対応区分度数")

xx <- c("月別対応区分度数")
cross <- table(income$発生月,income$対応区分)
par(xpd=TRUE)
ptable <- cross
#ptable <- prop.table(cross)
barplot(t(ptable), col=rainbow(8),legend=TRUE,clockwise=TRUE,xlab = "対応月",ylab = "対応区分度数",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別対応区分度数")

年度別集計

xx <- c("年度別対応区分度数")
cross <- table(income$発生年,income$対応区分)
par(xpd=TRUE)
ptable <- cross
#ptable <- prop.table(cross,2)
barplot(t(ptable), col=colors6,legend = TRUE,clockwise=TRUE,xlab = "年",ylab = "対応区分度数",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
#legend("top", inset=c(-10,-0.1),cex=1.0, fill=rainbow(12), bty="n")
title("年度別対応区分度数")

xx <- c("年度別対応区分度数")
cross <- table(income$発生年,income$対応区分)
ptable <- cross
#ptable <- prop.table(cross,2)
barplot(t(ptable),col=colors6,clockwise=TRUE,xlab = "年",ylab = "対応区分度数",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
par(xpd=TRUE)
title("年度別対応区分度数")

#legend("topleft", inset=c(-10,-0.1),cex=1.0, fill=colors, bty="n")
barplot(t(ptable),beside=TRUE,col=colors6,xlab = "年",ylab = "対応区分度数") # barの色だけ引き継ぐ、legendはinsetが入る
par(xpd=TRUE)
title("年度別対応区分度数")

barplot(t(ptable),beside=TRUE,col=cm.colors(8),xlab = “年”,ylab = “対応区分度数”,legend = TRUE) #

■■年度別集計

ptable <- prop.table(cross,2)
barplot(t(ptable),beside=TRUE,col=colors6,xlab = "年",ylab = "対応区分度数",legend = TRUE) # barの色だけ引き継ぐ、legendはinsetが入る
par(xpd=TRUE)
title("年度別対応区分度数")

凡例なし

barplot(t(ptable),beside=TRUE,col=colors6,xlab = "年",ylab = "対応区分度数") # barの色だけ引き継ぐ、legendはinsetが入る
par(xpd=TRUE)
title("年度別対応区分度数")

dat <- cbind(A=sample(10,3),B=sample(10,3),C=sample(10,3)) jpeg(“legend4.jpg”) par(mai=c(.8,.8,.8,1.2)) # 右端のスペースを開ける #par(xpd=FALSE) # グラフエリア外にプロットしない

,border=1:3,legend.text=colnames(ptable$対応区分)

■■発生源別集計

xx <- c("発生源別月別対応区")

cross <- table(income$発生月,income$発生原因)
par(xpd=TRUE)
ptable <- cross
#ptable <- prop.table(cross,2)
barplot(t(ptable), col=rainbow(8),legend=TRUE,clockwise=TRUE,xlab = "対応月",ylab = "発生度数",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別発生源別発生頻度")

xx <- c("発生源別月別対応区")
cross <- table(income$発生月,income$発生原因)
par(xpd=TRUE)
ptable <- cross
#ptable <- prop.table(cross,2)
barplot(t(ptable), col=rainbow(8),clockwise=TRUE,xlab = "対応月",ylab = "発生頻度",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別発生源別発生頻度")

s■発生原因別グラフ

xx <- c("発生源別月別対応区")
cross <- table(income$発生月,income$発生原因)
par(xpd=TRUE)

ptable <- prop.table(cross,1)
barplot(t(ptable), col=colors23,clockwise=TRUE,xlab = "対応月",ylab = "発生頻度",beside = TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別発生源別発生頻度")

xx <- c("発生源別月別対応区")
cross <- table(income$発生月,income$発生原因)
par(xpd=TRUE)
#ptable <- cross
ptable <- prop.table(cross,1)
barplot(t(ptable), col=colors23,clockwise=TRUE,xlab = "対応月",ylab = "発生頻度",beside = TRUE,legend=TRUE)
## Warning in plot.window(xlim, ylim, log = log, ...): "clockwise" はグラフィックス
## パラメータではありません
## Warning in axis(if (horiz) 2 else 1, at = at.l, labels = names.arg, lty =
## axis.lty, : "clockwise" はグラフィックスパラメータではありません
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "clockwise" はグラフィックスパラメータではありません
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...): "clockwise" はグ
## ラフィックスパラメータではありません
title("月別発生源別発生頻度")

参考

■■残りは参考

ptable <- prop.table(cross) mosaicplot(ptable) legend(“top”, inset=c(0,-0.1),cex=1.5,legend = xx, fill=colors, bty=“n”)

ptable <- prop.table(cross,1) mosaicplot(ptable)

ptable <- prop.table(cross,2) mosaicplot(ptable)

x2 <- table(income\(対応区分, income\)発生日) x3 <- addmargins(x2) colnames(x3) [ncol(x3)] <- “合計” rownames(x3) [nrow(x3)] <- “合計” #  と記述し行columnと列rowの文字を書き換える. x3

https://markezine.jp/article/detail/20790

library(polycor) polychor(income\(対応区分, income\)発生日,std.err=TRUE)

polychor(income\(対応区分, income\)geocoding, std.err=TRUE)

library(polycor)
## Warning: package 'polycor' was built under R version 3.6.2

polychor(income\(対応区分, income\)清掃, std.err=TRUE)

bfi <- income bfi <- bfi[-1][-3:-5][-6:-10][-13:-47] # 不要なカラム名を取り除く bfi2 <- income[2:14] bfi2 <- bfi2[-8:-10] bfi2 <- bfi2[-4:-5] bfi2 <- bfi2[-5] bfi2 dim(bfi2) #polychor(bfi2, polycor=TRUE)

#polychor(bfi2, std.err=TRUE)

polychor(bfi)

ggplot(income, aes(as.factor(清掃))) + 
  geom_bar() + 
  theme_bw()