For the following series, find an appropriate Box-Cox transformation in order to stabilize the variance.
usnetelecusgdpmcopperenplanementsusnetelecDescription: Annual US net electricity generation (billion kwh) for 1949-2003
## [1] 1
# ggseasonplot(usnetelec)
# ggseasonplot(usnetelec, polar = TRUE)
# ggsubseriesplot(usnetelec)
ggAcf(usnetelec)## [1] 0.5167714
The usnetelec series does not show any seasonality in the time, or ACF plots, so there is no increase in seasonal variation that corresponds with the increase in the level of the series. Therefore, a Box-Cox transformation does not make sense in this case. This can be seen in the before and after Box-Cox plots as well which show almost no change in the variation after the transformation.
usgdpDescription: Quarterly US GDP. 1947:1 - 2006.1.
## [1] 4
## [1] 0.366352
The usgdp series does not show any seasonality in the time, season, subseries or ACF plots, so there is no increase in seasonal variation (or seasonal variation at all for that matter) to correspond with the increase in the level of the series. Therefore, a Box-Cox transformation does not make sense in this case. This can be seen in the before and after Box-Cox plots as well which show almost no change in the variation after the transformation.
mcopperDescription: Monthly copper prices. Copper, grade A, electrolytic wire bars/cathodes,LME,cash (pounds/ton)
Source: UNCTAD http://stats.unctad.org/Handbook.
## [1] 12
## [1] 0.1919047
Once again, the mcopper series does not show any seasonality in the time, season, subseries or ACF plots, so there is no increase in seasonal variation (or seasonal variation at all) to correspond with the increase in the level of the series. Therefore, a Box-Cox transformation does not make sense in this case. This can be seen in the before and after Box-Cox plots as well which show almost no change in the variation after the transformation.
enplanementsDescription: "Domestic Revenue Enplanements (millions): 1996-2000.
Source: Department of Transportation, Bureau of Transportation Statistics, Air Carrier Traffic Statistic Monthly.
## [1] 12
## [1] -0.2269461
The enplanements series is the only one of the four that shows a clear seasonality that increases with the increase in the level of the series, so it is the only one of the four series for which a Box-Cox transformation is warranted and useful. You can see this in the before and after Box-Cox plots as well which show a evening out of the seasonal variation so that it becomes relatively consistent throughout the series.
Why is a Box-Cox transformation unhelpful for the cangas data?
Description: Monthly Canadian gas production, billions of cubic metres, January 1960 - February 2005
## [1] 0.5767759
As you can see from the before and after plots above the Box-Cox transformation did little if anything to even out the seasonal variation in the data. In fact it may have even made it worse. Mathematical transformations are helpful “If the data show variation that increases or decreases with the level of the series”1, however the seasonal variation does not increase or decrease with the level of the series in this case. The largest seasonal fluctuations in the cangas data are actually at a time when there is little to no discernible increase in the level of the series at all. There does not seem to be any correlation between the level of the series and the amount of seasonal fluctuation.
What Box-Cox transformation would you select for your retail data (from Exercise 3 in Section 2.10)?
Reminder: These represent retail sales in various categories for different Australian states.
Considering that these are sales forecasts we would want to use a bias-adjusted forecast. We would need to select the argument biasadj=TRUE when using a Box-Cox transformation in our forecasting methods.
| Series ID | A3349335T | A3349627V | A3349338X | A3349398A | A3349468W | A3349336V | A3349337W | A3349397X | A3349399C | A3349874C | A3349871W | A3349790V | A3349556W | A3349791W | A3349401C | A3349873A | A3349872X | A3349709X | A3349792X | A3349789K | A3349555V | A3349565X | A3349414R | A3349799R | A3349642T | A3349413L | A3349564W | A3349416V | A3349643V | A3349483V | A3349722T | A3349727C | A3349641R | A3349639C | A3349415T | A3349349F | A3349563V | A3349350R | A3349640L | A3349566A | A3349417W | A3349352V | A3349882C | A3349561R | A3349883F | A3349721R | A3349478A | A3349637X | A3349479C | A3349797K | A3349477X | A3349719C | A3349884J | A3349562T | A3349348C | A3349480L | A3349476W | A3349881A | A3349410F | A3349481R | A3349718A | A3349411J | A3349638A | A3349654A | A3349499L | A3349902A | A3349432V | A3349656F | A3349361W | A3349501L | A3349503T | A3349360V | A3349903C | A3349905J | A3349658K | A3349575C | A3349428C | A3349500K | A3349577J | A3349433W | A3349576F | A3349574A | A3349816F | A3349815C | A3349744F | A3349823C | A3349508C | A3349742A | A3349661X | A3349660W | A3349909T | A3349824F | A3349507A | A3349580W | A3349825J | A3349434X | A3349822A | A3349821X | A3349581X | A3349908R | A3349743C | A3349910A | A3349435A | A3349365F | A3349746K | A3349370X | A3349754K | A3349670A | A3349764R | A3349916R | A3349589T | A3349590A | A3349765T | A3349371A | A3349588R | A3349763L | A3349372C | A3349442X | A3349591C | A3349671C | A3349669T | A3349521W | A3349443A | A3349835L | A3349520V | A3349841J | A3349925T | A3349450X | A3349679W | A3349527K | A3349526J | A3349598V | A3349766V | A3349600V | A3349680F | A3349378T | A3349767W | A3349451A | A3349924R | A3349843L | A3349844R | A3349376L | A3349599W | A3349377R | A3349779F | A3349379V | A3349842K | A3349532C | A3349931L | A3349605F | A3349688X | A3349456L | A3349774V | A3349848X | A3349457R | A3349851L | A3349604C | A3349608L | A3349609R | A3349773T | A3349852R | A3349775W | A3349776X | A3349607K | A3349849A | A3349850K | A3349606J | A3349932R | A3349862V | A3349462J | A3349463K | A3349334R | A3349863W | A3349781T | A3349861T | A3349626T | A3349617R | A3349546T | A3349787F | A3349333L | A3349860R | A3349464L | A3349389X | A3349461F | A3349788J | A3349547V | A3349388W | A3349870V | A3349396W |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1982-04-01 | 303.1 | 41.7 | 63.9 | 408.7 | 65.8 | 91.8 | 53.6 | 211.3 | 94.0 | 32.7 | 126.7 | 178.3 | 50.4 | 22.2 | 43.0 | 62.4 | 178.0 | 61.8 | 85.4 | 147.2 | 1250.2 | 257.9 | 17.3 | 34.9 | 310.2 | 58.2 | 55.8 | 59.1 | 173.1 | 93.6 | 26.3 | 119.9 | 104.2 | 42.2 | 15.6 | 31.6 | 34.4 | 123.7 | 36.4 | 48.7 | 85.1 | 916.2 | 139.3 | NA | NA | 161.8 | 31.8 | 46.6 | 13.3 | 91.6 | 28.9 | 13.9 | 42.8 | 67.5 | 18.4 | 11.1 | 22.0 | 25.8 | 77.3 | 18.7 | 26.7 | 45.4 | 486.3 | 83.5 | 6.0 | 11.3 | 100.8 | 15.2 | 16.0 | 8.6 | 39.7 | 19.1 | 6.6 | 25.7 | 48.9 | 8.1 | 6.1 | 7.2 | 12.9 | 34.2 | 14.3 | 15.8 | 30.1 | 279.4 | 96.6 | 12.3 | 13.1 | 122.0 | 19.2 | 22.5 | 8.6 | 50.4 | 21.4 | 7.4 | 28.8 | 36.5 | 9.7 | 6.5 | 14.6 | 11.3 | 42.1 | 8.0 | 10.4 | 18.4 | 298.3 | 26.0 | NA | NA | 28.4 | 6.1 | 5.1 | 2.4 | 13.6 | 6.7 | 1.9 | 8.7 | NA | 2.9 | 1.8 | 4.0 | NA | NA | 1.9 | 3.5 | 5.4 | 79.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 12.7 | 1.2 | 1.6 | 15.5 | 2.7 | 4.4 | 2.6 | 9.7 | 3.7 | 2.2 | 5.9 | 10.3 | 2.3 | 1.1 | 2.5 | 2.2 | 8.1 | 4.4 | 3.2 | 7.6 | 57.1 | 933.4 | 79.6 | 149.6 | 1162.6 | 200.3 | 243.4 | 148.6 | 592.3 | 268.5 | 91.4 | 359.9 | 460.1 | 135.1 | 64.9 | 125.6 | 153.5 | 479.1 | 146.3 | 196.1 | 342.4 | 3396.4 |
| 1982-05-01 | 297.8 | 43.1 | 64.0 | 404.9 | 65.8 | 102.6 | 55.4 | 223.8 | 105.7 | 35.6 | 141.3 | 202.8 | 49.9 | 23.1 | 45.3 | 63.1 | 181.5 | 60.8 | 84.8 | 145.6 | 1300.0 | 257.4 | 18.1 | 34.6 | 310.1 | 62.0 | 58.4 | 59.2 | 179.5 | 95.3 | 27.1 | 122.5 | 110.2 | 42.1 | 15.8 | 31.5 | 34.4 | 123.9 | 36.2 | 48.9 | 85.1 | 931.2 | 136.0 | NA | NA | 158.7 | 32.8 | 49.6 | 12.7 | 95.0 | 30.6 | 14.7 | 45.3 | 69.7 | 17.7 | 11.7 | 21.9 | 25.9 | 77.2 | 19.5 | 27.3 | 46.8 | 492.8 | 80.6 | 5.4 | 11.1 | 97.1 | 17.2 | 19.0 | 9.5 | 45.7 | 21.6 | 7.0 | 28.6 | 52.2 | 7.5 | 6.5 | 7.5 | 13.0 | 34.4 | 14.2 | 15.8 | 30.0 | 288.0 | 96.4 | 11.8 | 13.4 | 121.6 | 21.9 | 27.8 | 8.2 | 57.9 | 24.1 | 8.0 | 32.1 | 43.7 | 11.0 | 7.2 | 15.2 | 11.6 | 45.0 | 8.0 | 10.3 | 18.3 | 318.5 | 25.4 | NA | NA | 27.7 | 6.3 | 4.7 | 2.5 | 13.4 | 7.4 | 1.9 | 9.3 | NA | 2.9 | 1.9 | 4.0 | NA | NA | 2.0 | 3.5 | 5.5 | 78.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 12.1 | 1.4 | 1.6 | 15.1 | 3.0 | 4.9 | 3.3 | 11.1 | 3.8 | 2.1 | 5.9 | 10.6 | 2.5 | 1.0 | 2.5 | 2.0 | 8.0 | 3.4 | 3.3 | 6.7 | 57.3 | 920.5 | 80.8 | 149.7 | 1150.9 | 210.3 | 268.3 | 151.0 | 629.6 | 289.8 | 96.8 | 386.6 | 502.6 | 134.9 | 67.7 | 128.7 | 154.8 | 486.1 | 145.5 | 196.6 | 342.1 | 3497.9 |
| 1982-06-01 | 298.0 | 40.3 | 62.7 | 401.0 | 62.3 | 105.0 | 48.4 | 215.7 | 95.1 | 32.5 | 127.6 | 176.3 | 48.0 | 22.8 | 43.7 | 59.6 | 174.1 | 58.7 | 80.7 | 139.4 | 1234.2 | 261.2 | 18.1 | 34.6 | 313.9 | 53.8 | 53.7 | 59.8 | 167.3 | 85.2 | 24.3 | 109.6 | 96.7 | 38.5 | 15.2 | 29.6 | 33.5 | 116.8 | 35.7 | 47.1 | 82.8 | 887.0 | 143.5 | NA | NA | 166.6 | 34.9 | 51.4 | 12.9 | 99.2 | 30.5 | 14.5 | 45.1 | 60.7 | 17.7 | 11.5 | 22.7 | 25.9 | 77.7 | 18.6 | 26.2 | 44.8 | 494.1 | 82.3 | 5.2 | 11.2 | 98.7 | 17.4 | 18.1 | 8.4 | 43.9 | 18.3 | 6.0 | 24.3 | 48.9 | 6.7 | 6.1 | 7.5 | 12.5 | 32.7 | 13.4 | 15.3 | 28.7 | 277.2 | 95.6 | 11.3 | 13.5 | 120.4 | 19.9 | 26.7 | 7.9 | 54.4 | 21.4 | 7.0 | 28.5 | 38.0 | 10.7 | 6.6 | 14.5 | 10.9 | 42.5 | 7.3 | 10.4 | 17.7 | 301.5 | 25.3 | NA | NA | 27.7 | 6.4 | 5.2 | 2.1 | 13.7 | 6.7 | 1.8 | 8.6 | NA | 2.9 | 1.9 | 3.9 | NA | NA | 2.0 | 3.1 | 5.1 | 77.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 12.5 | 1.3 | 1.7 | 15.5 | 2.5 | 4.8 | 2.7 | 9.9 | 3.2 | 2.0 | 5.1 | 9.9 | 2.3 | 1.0 | 2.5 | 2.0 | 7.8 | 3.6 | 3.5 | 7.1 | 55.3 | 933.6 | 77.3 | 149.0 | 1160.0 | 198.7 | 266.1 | 142.6 | 607.4 | 261.9 | 88.6 | 350.5 | 443.8 | 128.2 | 65.5 | 125.0 | 148.8 | 467.5 | 140.2 | 188.5 | 328.7 | 3357.8 |
| 1982-07-01 | 307.9 | 40.9 | 65.6 | 414.4 | 68.2 | 106.0 | 52.1 | 226.3 | 95.3 | 33.5 | 128.8 | 172.6 | 48.6 | 23.2 | 46.5 | 61.9 | 180.2 | 60.3 | 82.4 | 142.7 | 1265.0 | 266.1 | 18.9 | 35.2 | 320.2 | 57.9 | 56.9 | 59.8 | 174.5 | 91.6 | 25.6 | 117.2 | 104.6 | 38.9 | 15.2 | 35.2 | 33.4 | 122.7 | 34.6 | 47.5 | 82.1 | 921.3 | 150.2 | NA | NA | 172.9 | 34.6 | 50.9 | 13.9 | 99.4 | 27.9 | 15.2 | 43.1 | 67.9 | 18.4 | 13.1 | 24.3 | 28.7 | 84.4 | 22.6 | 25.2 | 47.8 | 515.6 | 88.2 | 5.6 | 12.1 | 105.9 | 18.7 | 20.3 | 10.3 | 49.3 | 18.6 | 6.4 | 25.0 | 48.3 | 7.8 | 6.6 | 7.9 | 13.9 | 36.2 | 14.5 | 17.0 | 31.4 | 296.1 | 103.3 | 12.1 | 13.8 | 129.2 | 19.3 | 28.2 | 8.7 | 56.2 | 21.8 | 7.2 | 29.0 | 42.0 | 9.0 | 7.0 | 14.6 | 11.4 | 42.0 | 7.8 | 10.3 | 18.1 | 316.4 | 27.8 | NA | NA | 30.3 | 5.9 | 5.2 | 2.7 | 13.7 | 7.1 | 1.8 | 8.9 | NA | 3.1 | 1.8 | 4.4 | NA | NA | 1.9 | 3.6 | 5.5 | 82.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 13.2 | 1.4 | 1.6 | 16.1 | 2.8 | 5.1 | 2.4 | 10.2 | 3.4 | 2.1 | 5.4 | 8.8 | 2.6 | 1.1 | 2.6 | 2.0 | 8.3 | 4.0 | 3.5 | 7.5 | 56.3 | 972.6 | 80.4 | 153.5 | 1206.4 | 208.7 | 273.5 | 150.1 | 632.4 | 267.2 | 92.1 | 359.3 | 459.1 | 129.9 | 68.5 | 136.6 | 156.1 | 491.1 | 146.5 | 192.0 | 338.5 | 3486.8 |
| 1982-08-01 | 299.2 | 42.1 | 62.6 | 403.8 | 66.0 | 96.9 | 54.2 | 217.1 | 82.8 | 29.4 | 112.3 | 169.6 | 51.3 | 21.4 | 44.8 | 60.7 | 178.1 | 56.1 | 80.7 | 136.8 | 1217.6 | 247.2 | 19.0 | 33.8 | 300.1 | 59.2 | 56.7 | 62.2 | 178.1 | 85.2 | 23.5 | 108.7 | 92.5 | 39.5 | 14.5 | 34.7 | 33.2 | 122.0 | 32.5 | 49.3 | 81.8 | 883.2 | 144.0 | NA | NA | 165.9 | 32.9 | 51.6 | 12.8 | 97.3 | 27.4 | 14.1 | 41.5 | 66.5 | 17.8 | 13.0 | 23.6 | 27.7 | 82.1 | 22.6 | 25.6 | 48.2 | 501.4 | 82.3 | 5.7 | 11.7 | 99.7 | 18.6 | 19.6 | 10.6 | 48.9 | 17.1 | 6.0 | 23.1 | 49.4 | 7.9 | 6.3 | 8.3 | 13.7 | 36.1 | 13.6 | 17.5 | 31.1 | 288.4 | 96.6 | 12.0 | 13.3 | 121.9 | 19.6 | 27.4 | 7.9 | 55.0 | 18.7 | 6.6 | 25.3 | 38.5 | 9.1 | 6.8 | 15.3 | 10.9 | 42.1 | 7.6 | 10.1 | 17.7 | 300.5 | 26.6 | NA | NA | 29.0 | 5.7 | 4.8 | 2.9 | 13.4 | 5.8 | 1.7 | 7.5 | NA | 3.1 | 1.8 | 4.2 | NA | NA | 1.9 | 3.6 | 5.5 | 78.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 12.7 | 1.6 | 1.6 | 15.8 | 2.8 | 4.6 | 2.7 | 10.1 | 3.1 | 2.0 | 5.0 | 8.8 | 2.6 | 0.9 | 2.8 | 2.0 | 8.4 | 3.6 | 3.7 | 7.3 | 55.4 | 923.5 | 81.6 | 147.3 | 1152.5 | 206.2 | 262.7 | 153.7 | 622.6 | 241.5 | 83.7 | 325.2 | 438.4 | 133.0 | 65.2 | 134.7 | 152.8 | 485.7 | 138.8 | 192.7 | 331.5 | 3355.9 |
| 1982-09-01 | 305.4 | 42.0 | 64.4 | 411.8 | 62.3 | 97.5 | 53.6 | 213.4 | 89.4 | 32.2 | 121.6 | 181.4 | 49.6 | 21.8 | 43.9 | 61.2 | 176.5 | 58.1 | 82.1 | 140.2 | 1244.9 | 262.4 | 18.4 | 35.4 | 316.2 | 57.1 | 58.9 | 63.6 | 179.6 | 89.5 | 24.3 | 113.8 | 98.3 | 41.7 | 15.1 | 34.2 | 34.5 | 125.5 | 33.9 | 50.7 | 84.6 | 917.9 | 146.9 | NA | NA | 169.5 | 33.7 | 49.6 | 14.5 | 97.9 | 29.1 | 15.5 | 44.5 | 73.4 | 18.8 | 13.0 | 21.8 | 29.0 | 82.6 | 23.2 | 26.7 | 49.8 | 517.7 | 84.2 | 5.8 | 12.0 | 102.0 | 18.8 | 19.9 | 11.5 | 50.2 | 18.2 | 6.4 | 24.6 | 48.5 | 7.8 | 6.4 | 7.8 | 14.1 | 36.0 | 13.9 | 17.8 | 31.7 | 293.0 | 101.4 | 12.3 | 13.4 | 127.1 | 19.9 | 27.0 | 8.7 | 55.6 | 19.5 | 7.4 | 26.9 | 40.2 | 10.0 | 7.1 | 15.1 | 11.7 | 43.9 | 8.2 | 10.3 | 18.5 | 312.3 | 27.1 | NA | NA | 29.6 | 5.3 | 4.8 | 2.6 | 12.8 | 5.8 | 1.7 | 7.5 | NA | 3.2 | 1.8 | 4.0 | NA | NA | 1.9 | 3.8 | 5.7 | 79.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 12.9 | 1.4 | 1.8 | 16.0 | 2.6 | 4.3 | 3.1 | 10.0 | 3.4 | 2.2 | 5.6 | 9.2 | 2.6 | 1.0 | 2.8 | 2.2 | 8.6 | 4.2 | 3.9 | 8.1 | 57.5 | 955.9 | 81.4 | 151.8 | 1189.1 | 200.9 | 263.1 | 157.9 | 622.0 | 256.2 | 90.1 | 346.3 | 465.1 | 135.5 | 66.8 | 130.4 | 157.2 | 489.9 | 144.3 | 197.6 | 341.9 | 3454.3 |
## [1] 0.193853
We can see from the before and after plots above that a Box-Cox transformation with \(\lambda =\) 0.193853 on the retail series is helpful in stabilizing the seasonal variance.
# Plot some forecasts
autoplot(myts) +
autolayer(meanf(myts, h=76, lambda='auto', biasadj = TRUE),
series="Mean", PI=FALSE) +
autolayer(rwf(myts, h=76, lambda='auto', drift=TRUE, biasadj = TRUE),
series="Naïve drift method", PI=FALSE) +
autolayer(snaive(myts, h=76, lambda='auto', drift=TRUE, biasadj = TRUE),
series="Seasonal naïve", PI=FALSE) +
ggtitle("Forecasts for retail sales") +
xlab("Year") + ylab("Australian Dollars") +
guides(colour=guide_legend(title="Forecast"))For your retail time series (from Exercise 3 in Section 2.10):
| ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | Theil.s.U | |
|---|---|---|---|---|---|---|---|---|
| Training set | 61.56787 | 72.20702 | 61.68438 | 6.388722 | 6.404105 | 1.000000 | 0.6018274 | NA |
| Test set | 97.44583 | 109.62545 | 100.02917 | 4.629852 | 4.751209 | 1.621629 | 0.2686595 | 0.9036205 |
##
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 812.76, df = 24, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 24
Do the residuals appear to be uncorrelated and normally distributed?
The residuals do not appear to be uncorrelated or normally distributed. The p-value is extremely low and in the ACF plot above you can see that most of the lags extend far beyond the significance range (between the blue lines). Lags beyond this range are significantly different from zero. The histogram shows a clear right skew.
train2 <- window(myts, end = c(2008, 12))
test.BIG <- window(myts, start = 2009)
train3 <- window(myts, end = c(2012, 12))
test.small <- window(myts, start = 2013)
fc.BIG <- snaive(train2)
fc.small <- snaive(train3)autoplot(myts) +
autolayer(fc, series = "Orig Split", PI = FALSE) +
autolayer(fc.BIG, series = "Large Test Group", PI = FALSE) +
autolayer(fc.small, series = "Small Test Group", PI = FALSE) +
ggtitle("Split Comparison") +
guides(colour = guide_legend(title = "Forecasts"))| ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | Theil.s.U | |
|---|---|---|---|---|---|---|---|---|
| Training set | 61.56787 | 72.20702 | 61.68438 | 6.388722 | 6.404105 | 1.000000 | 0.6018274 | NA |
| Test set | 97.44583 | 109.62545 | 100.02917 | 4.629852 | 4.751209 | 1.621629 | 0.2686595 | 0.9036205 |
| ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | Theil.s.U | |
|---|---|---|---|---|---|---|---|---|
| Training set | 58.79579 | 68.82721 | 58.92136 | 6.506662 | 6.523239 | 1.000000 | 0.6157221 | NA |
| Test set | 151.04167 | 165.81408 | 151.04167 | 7.480066 | 7.480066 | 2.563445 | 0.5142346 | 1.273142 |
| ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | Theil.s.U | |
|---|---|---|---|---|---|---|---|---|
| Training set | 61.43585 | 72.16410 | 61.82577 | 6.150356 | 6.177893 | 1.000000 | 0.5721717 | NA |
| Test set | 74.47500 | 86.11787 | 74.47500 | 3.250322 | 3.250322 | 1.204595 | -0.1109222 | 0.5204259 |
The accuracy measures are very sensitive to the training/test split. There is a big difference in the measures depending on how small or large we make the split.
Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on February 16, 2020.↩